<!DOCTYPE html>
Programming Assignment¶
Model validation on the Iris dataset¶
Instructions¶
In this notebook, you will build, compile and fit a neural network model to the Iris dataset. You will also implement validation, regularisation and callbacks to improve your model.
Some code cells are provided you in the notebook. You should avoid editing provided code, and make sure to execute the cells in order to avoid unexpected errors. Some cells begin with the line:
#### GRADED CELL ####
Don't move or edit this first line - this is what the automatic grader looks for to recognise graded cells. These cells require you to write your own code to complete them, and are automatically graded when you submit the notebook. Don't edit the function name or signature provided in these cells, otherwise the automatic grader might not function properly. Inside these graded cells, you can use any functions or classes that are imported below, but make sure you don't use any variables that are outside the scope of the function.
How to submit¶
Complete all the tasks you are asked for in the worksheet. When you have finished and are happy with your code, press the Submit Assignment button at the top of this notebook.
Let's get started!¶
We'll start running some imports, and loading the dataset. Do not edit the existing imports in the following cell. If you would like to make further Tensorflow imports, you should add them here.
#### PACKAGE IMPORTS ####
# Run this cell first to import all required packages. Do not make any imports elsewhere in the notebook
from numpy.random import seed
seed(8)
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, model_selection
%matplotlib inline
# If you would like to make further imports from tensorflow, add them here
The Iris dataset¶
In this assignment, you will use the Iris dataset. It consists of 50 samples from each of three species of Iris (Iris setosa, Iris virginica and Iris versicolor). Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters. For a reference, see the following papers:
- R. A. Fisher. "The use of multiple measurements in taxonomic problems". Annals of Eugenics. 7 (2): 179–188, 1936.
Your goal is to construct a neural network that classifies each sample into the correct class, as well as applying validation and regularisation techniques.
Load and preprocess the data¶
First read in the Iris dataset using datasets.load_iris()
, and split the dataset into training and test sets.
#### GRADED CELL ####
# Complete the following function.
# Make sure to not change the function name or arguments.
def read_in_and_split_data(iris_data):
"""
This function takes the Iris dataset as loaded by sklearn.datasets.load_iris(), and then
splits so that the training set includes 90% of the full dataset, with the test set
making up the remaining 10%.
Your function should return a tuple (train_data, test_data, train_targets, test_targets)
of appropriately split training and test data and targets.
If you would like to import any further packages to aid you in this task, please do so in the
Package Imports cell above.
"""
train_data, test_data, train_targets, test_targets = model_selection.train_test_split(iris_data["data"],iris_data["target"], test_size=0.1)
return (train_data, test_data, train_targets, test_targets)
# Run your function to generate the test and training data.
iris_data = datasets.load_iris()
train_data, test_data, train_targets, test_targets = read_in_and_split_data(iris_data)
We will now convert the training and test targets using a one hot encoder.
# Convert targets to a one-hot encoding
train_targets = tf.keras.utils.to_categorical(np.array(train_targets))
test_targets = tf.keras.utils.to_categorical(np.array(test_targets))
Build the neural network model¶
You can now construct a model to fit to the data. Using the Sequential API, build your model according to the following specifications:
- The model should use the
input_shape
in the function argument to set the input size in the first layer. - The first layer should be a dense layer with 64 units.
- The weights of the first layer should be initialised with the He uniform initializer.
- The biases of the first layer should be all initially equal to one.
- There should then be a further four dense layers, each with 128 units.
- This should be followed with four dense layers, each with 64 units.
- All of these Dense layers should use the ReLU activation function.
- The output Dense layer should have 3 units and the softmax activation function.
In total, the network should have 10 layers.
#### GRADED CELL ####
# Complete the following function.
# Make sure to not change the function name or arguments.
def get_model(input_shape):
"""
This function should build a Sequential model according to the above specification. Ensure the
weights are initialised by providing the input_shape argument in the first layer, given by the
function argument.
Your function should return the model.
"""
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(64, kernel_initializer=tf.keras.initializers.he_uniform(), bias_initializer=tf.keras.initializers.ones(), input_shape=input_shape),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dense(3, activation="softmax"),
])
return model
# Run your function to get the model
model = get_model(train_data[0].shape)
Compile the model¶
You should now compile the model using the compile
method. Remember that you need to specify an optimizer, a loss function and a metric to judge the performance of your model.
#### GRADED CELL ####
# Complete the following function.
# Make sure to not change the function name or arguments.
def compile_model(model):
"""
This function takes in the model returned from your get_model function, and compiles it with an optimiser,
loss function and metric.
Compile the model using the Adam optimiser (with learning rate set to 0.0001),
the categorical crossentropy loss function and accuracy as the only metric.
Your function doesn't need to return anything; the model will be compiled in-place.
"""
model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),
loss = tf.keras.losses.CategoricalCrossentropy(),
metrics=["accuracy"]
)
# Run your function to compile the model
compile_model(model)
Fit the model to the training data¶
Now you should train the model on the Iris dataset, using the model's fit
method.
- Run the training for a fixed number of epochs, given by the function's
epochs
argument. - Return the training history to be used for plotting the learning curves.
- Set the batch size to 40.
- Set the validation set to be 15% of the training set.
#### GRADED CELL ####
# Complete the following function.
# Make sure to not change the function name or arguments.
def train_model(model, train_data, train_targets, epochs):
"""
This function should train the model for the given number of epochs on the
train_data and train_targets.
Your function should return the training history, as returned by model.fit.
"""
history = model.fit(train_data, train_targets, epochs=epochs, batch_size=40, validation_split=0.15, verbose=2)
return history
Run the following cell to run the training for 800 epochs.
# Run your function to train the model
history = train_model(model, train_data, train_targets, epochs=800)
Train on 114 samples, validate on 21 samples Epoch 1/800 114/114 [==============================] - 1s 11ms/sample - loss: 1.1145 - accuracy: 0.3333 - val_loss: 1.0557 - val_accuracy: 0.3333 Epoch 2/800 114/114 [==============================] - 0s 932us/sample - loss: 1.0773 - accuracy: 0.3333 - val_loss: 1.0415 - val_accuracy: 0.3333 Epoch 3/800 114/114 [==============================] - 0s 898us/sample - loss: 1.0495 - accuracy: 0.3333 - val_loss: 1.0202 - val_accuracy: 0.3333 Epoch 4/800 114/114 [==============================] - 0s 861us/sample - loss: 1.0225 - accuracy: 0.3333 - val_loss: 0.9925 - val_accuracy: 0.3333 Epoch 5/800 114/114 [==============================] - 0s 908us/sample - loss: 0.9936 - accuracy: 0.3333 - val_loss: 0.9604 - val_accuracy: 0.3333 Epoch 6/800 114/114 [==============================] - 0s 885us/sample - loss: 0.9630 - accuracy: 0.3333 - val_loss: 0.9403 - val_accuracy: 0.3333 Epoch 7/800 114/114 [==============================] - 0s 865us/sample - loss: 0.9393 - accuracy: 0.4123 - val_loss: 0.9212 - val_accuracy: 0.5714 Epoch 8/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.9155 - accuracy: 0.6754 - val_loss: 0.9004 - val_accuracy: 0.5714 Epoch 9/800 114/114 [==============================] - 0s 961us/sample - loss: 0.8922 - accuracy: 0.6930 - val_loss: 0.8800 - val_accuracy: 0.5714 Epoch 10/800 114/114 [==============================] - 0s 884us/sample - loss: 0.8670 - accuracy: 0.6930 - val_loss: 0.8584 - val_accuracy: 0.5714 Epoch 11/800 114/114 [==============================] - 0s 877us/sample - loss: 0.8429 - accuracy: 0.6930 - val_loss: 0.8364 - val_accuracy: 0.5714 Epoch 12/800 114/114 [==============================] - 0s 892us/sample - loss: 0.8185 - accuracy: 0.7105 - val_loss: 0.8149 - val_accuracy: 0.5714 Epoch 13/800 114/114 [==============================] - 0s 936us/sample - loss: 0.7924 - accuracy: 0.7368 - val_loss: 0.7931 - val_accuracy: 0.6667 Epoch 14/800 114/114 [==============================] - 0s 904us/sample - loss: 0.7658 - accuracy: 0.7895 - val_loss: 0.7703 - val_accuracy: 0.7143 Epoch 15/800 114/114 [==============================] - 0s 883us/sample - loss: 0.7393 - accuracy: 0.8158 - val_loss: 0.7467 - val_accuracy: 0.7143 Epoch 16/800 114/114 [==============================] - 0s 887us/sample - loss: 0.7096 - accuracy: 0.8158 - val_loss: 0.7200 - val_accuracy: 0.7619 Epoch 17/800 114/114 [==============================] - 0s 871us/sample - loss: 0.6818 - accuracy: 0.8158 - val_loss: 0.6956 - val_accuracy: 0.7619 Epoch 18/800 114/114 [==============================] - 0s 880us/sample - loss: 0.6516 - accuracy: 0.8158 - val_loss: 0.6721 - val_accuracy: 0.7619 Epoch 19/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6215 - accuracy: 0.8333 - val_loss: 0.6450 - val_accuracy: 0.7619 Epoch 20/800 114/114 [==============================] - 0s 933us/sample - loss: 0.5914 - accuracy: 0.8772 - val_loss: 0.6171 - val_accuracy: 0.8571 Epoch 21/800 114/114 [==============================] - 0s 883us/sample - loss: 0.5637 - accuracy: 0.8421 - val_loss: 0.5968 - val_accuracy: 0.7619 Epoch 22/800 114/114 [==============================] - 0s 890us/sample - loss: 0.5337 - accuracy: 0.8596 - val_loss: 0.5715 - val_accuracy: 0.9048 Epoch 23/800 114/114 [==============================] - 0s 850us/sample - loss: 0.5079 - accuracy: 0.9386 - val_loss: 0.5456 - val_accuracy: 1.0000 Epoch 24/800 114/114 [==============================] - 0s 960us/sample - loss: 0.4826 - accuracy: 0.9474 - val_loss: 0.5228 - val_accuracy: 0.9524 Epoch 25/800 114/114 [==============================] - 0s 880us/sample - loss: 0.4574 - accuracy: 0.9123 - val_loss: 0.5042 - val_accuracy: 0.9048 Epoch 26/800 114/114 [==============================] - 0s 879us/sample - loss: 0.4377 - accuracy: 0.9386 - val_loss: 0.4854 - val_accuracy: 1.0000 Epoch 27/800 114/114 [==============================] - 0s 897us/sample - loss: 0.4159 - accuracy: 0.9474 - val_loss: 0.4607 - val_accuracy: 0.9524 Epoch 28/800 114/114 [==============================] - 0s 904us/sample - loss: 0.3960 - accuracy: 0.9474 - val_loss: 0.4356 - val_accuracy: 1.0000 Epoch 29/800 114/114 [==============================] - 0s 828us/sample - loss: 0.3762 - accuracy: 0.9737 - val_loss: 0.4171 - val_accuracy: 1.0000 Epoch 30/800 114/114 [==============================] - 0s 918us/sample - loss: 0.3569 - accuracy: 0.9474 - val_loss: 0.4050 - val_accuracy: 0.9524 Epoch 31/800 114/114 [==============================] - 0s 929us/sample - loss: 0.3419 - accuracy: 0.9386 - val_loss: 0.3858 - val_accuracy: 1.0000 Epoch 32/800 114/114 [==============================] - 0s 869us/sample - loss: 0.3282 - accuracy: 0.9561 - val_loss: 0.3637 - val_accuracy: 1.0000 Epoch 33/800 114/114 [==============================] - 0s 889us/sample - loss: 0.3088 - accuracy: 0.9649 - val_loss: 0.3429 - val_accuracy: 1.0000 Epoch 34/800 114/114 [==============================] - 0s 923us/sample - loss: 0.2958 - accuracy: 0.9561 - val_loss: 0.3251 - val_accuracy: 1.0000 Epoch 35/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.2821 - accuracy: 0.9561 - val_loss: 0.3097 - val_accuracy: 1.0000 Epoch 36/800 114/114 [==============================] - 0s 943us/sample - loss: 0.2686 - accuracy: 0.9825 - val_loss: 0.2942 - val_accuracy: 1.0000 Epoch 37/800 114/114 [==============================] - 0s 840us/sample - loss: 0.2541 - accuracy: 0.9737 - val_loss: 0.2768 - val_accuracy: 1.0000 Epoch 38/800 114/114 [==============================] - 0s 941us/sample - loss: 0.2414 - accuracy: 0.9737 - val_loss: 0.2599 - val_accuracy: 1.0000 Epoch 39/800 114/114 [==============================] - 0s 876us/sample - loss: 0.2297 - accuracy: 0.9737 - val_loss: 0.2435 - val_accuracy: 1.0000 Epoch 40/800 114/114 [==============================] - 0s 894us/sample - loss: 0.2184 - accuracy: 0.9737 - val_loss: 0.2288 - val_accuracy: 1.0000 Epoch 41/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.2070 - accuracy: 0.9912 - val_loss: 0.2160 - val_accuracy: 1.0000 Epoch 42/800 114/114 [==============================] - 0s 918us/sample - loss: 0.2005 - accuracy: 0.9825 - val_loss: 0.2013 - val_accuracy: 1.0000 Epoch 43/800 114/114 [==============================] - 0s 890us/sample - loss: 0.1895 - accuracy: 0.9737 - val_loss: 0.1890 - val_accuracy: 1.0000 Epoch 44/800 114/114 [==============================] - 0s 884us/sample - loss: 0.1776 - accuracy: 0.9912 - val_loss: 0.1782 - val_accuracy: 1.0000 Epoch 45/800 114/114 [==============================] - 0s 884us/sample - loss: 0.1689 - accuracy: 0.9737 - val_loss: 0.1666 - val_accuracy: 1.0000 Epoch 46/800 114/114 [==============================] - 0s 879us/sample - loss: 0.1606 - accuracy: 0.9737 - val_loss: 0.1566 - val_accuracy: 1.0000 Epoch 47/800 114/114 [==============================] - 0s 884us/sample - loss: 0.1549 - accuracy: 0.9737 - val_loss: 0.1468 - val_accuracy: 1.0000 Epoch 48/800 114/114 [==============================] - 0s 852us/sample - loss: 0.1477 - accuracy: 0.9912 - val_loss: 0.1376 - val_accuracy: 1.0000 Epoch 49/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.1396 - accuracy: 0.9737 - val_loss: 0.1286 - val_accuracy: 1.0000 Epoch 50/800 114/114 [==============================] - 0s 930us/sample - loss: 0.1328 - accuracy: 0.9825 - val_loss: 0.1190 - val_accuracy: 1.0000 Epoch 51/800 114/114 [==============================] - 0s 901us/sample - loss: 0.1307 - accuracy: 0.9737 - val_loss: 0.1092 - val_accuracy: 1.0000 Epoch 52/800 114/114 [==============================] - 0s 886us/sample - loss: 0.1215 - accuracy: 0.9825 - val_loss: 0.1022 - val_accuracy: 1.0000 Epoch 53/800 114/114 [==============================] - 0s 881us/sample - loss: 0.1163 - accuracy: 0.9737 - val_loss: 0.0937 - val_accuracy: 1.0000 Epoch 54/800 114/114 [==============================] - 0s 879us/sample - loss: 0.1129 - accuracy: 0.9737 - val_loss: 0.0919 - val_accuracy: 1.0000 Epoch 55/800 114/114 [==============================] - 0s 865us/sample - loss: 0.1083 - accuracy: 0.9912 - val_loss: 0.0834 - val_accuracy: 1.0000 Epoch 56/800 114/114 [==============================] - 0s 926us/sample - loss: 0.1045 - accuracy: 0.9825 - val_loss: 0.0785 - val_accuracy: 1.0000 Epoch 57/800 114/114 [==============================] - 0s 908us/sample - loss: 0.1007 - accuracy: 0.9649 - val_loss: 0.0778 - val_accuracy: 1.0000 Epoch 58/800 114/114 [==============================] - 0s 887us/sample - loss: 0.1004 - accuracy: 0.9737 - val_loss: 0.0706 - val_accuracy: 1.0000 Epoch 59/800 114/114 [==============================] - 0s 886us/sample - loss: 0.0970 - accuracy: 0.9737 - val_loss: 0.0689 - val_accuracy: 1.0000 Epoch 60/800 114/114 [==============================] - 0s 882us/sample - loss: 0.0975 - accuracy: 0.9737 - val_loss: 0.0639 - val_accuracy: 1.0000 Epoch 61/800 114/114 [==============================] - 0s 135us/sample - loss: 0.0908 - accuracy: 0.9825 - val_loss: 0.0649 - val_accuracy: 1.0000 Epoch 62/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0883 - accuracy: 0.9825 - val_loss: 0.0600 - val_accuracy: 1.0000 Epoch 63/800 114/114 [==============================] - 0s 927us/sample - loss: 0.1087 - accuracy: 0.9649 - val_loss: 0.0570 - val_accuracy: 1.0000 Epoch 64/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0882 - accuracy: 0.9825 - val_loss: 0.0705 - val_accuracy: 1.0000 Epoch 65/800 114/114 [==============================] - 0s 894us/sample - loss: 0.0950 - accuracy: 0.9649 - val_loss: 0.0548 - val_accuracy: 1.0000 Epoch 66/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0954 - accuracy: 0.9737 - val_loss: 0.0600 - val_accuracy: 1.0000 Epoch 67/800 114/114 [==============================] - 0s 941us/sample - loss: 0.0913 - accuracy: 0.9649 - val_loss: 0.0513 - val_accuracy: 1.0000 Epoch 68/800 114/114 [==============================] - 0s 874us/sample - loss: 0.1027 - accuracy: 0.9649 - val_loss: 0.0671 - val_accuracy: 1.0000 Epoch 69/800 114/114 [==============================] - 0s 872us/sample - loss: 0.0940 - accuracy: 0.9649 - val_loss: 0.0472 - val_accuracy: 1.0000 Epoch 70/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0873 - accuracy: 0.9737 - val_loss: 0.0426 - val_accuracy: 1.0000 Epoch 71/800 114/114 [==============================] - 0s 889us/sample - loss: 0.0825 - accuracy: 0.9649 - val_loss: 0.0579 - val_accuracy: 1.0000 Epoch 72/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0780 - accuracy: 0.9649 - val_loss: 0.0408 - val_accuracy: 1.0000 Epoch 73/800 114/114 [==============================] - 0s 948us/sample - loss: 0.0715 - accuracy: 0.9912 - val_loss: 0.0384 - val_accuracy: 1.0000 Epoch 74/800 114/114 [==============================] - 0s 840us/sample - loss: 0.0745 - accuracy: 0.9737 - val_loss: 0.0378 - val_accuracy: 1.0000 Epoch 75/800 114/114 [==============================] - 0s 934us/sample - loss: 0.0683 - accuracy: 0.9912 - val_loss: 0.0439 - val_accuracy: 1.0000 Epoch 76/800 114/114 [==============================] - 0s 859us/sample - loss: 0.0705 - accuracy: 0.9825 - val_loss: 0.0446 - val_accuracy: 1.0000 Epoch 77/800 114/114 [==============================] - 0s 889us/sample - loss: 0.0689 - accuracy: 0.9825 - val_loss: 0.0340 - val_accuracy: 1.0000 Epoch 78/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0681 - accuracy: 0.9912 - val_loss: 0.0328 - val_accuracy: 1.0000 Epoch 79/800 114/114 [==============================] - 0s 860us/sample - loss: 0.0768 - accuracy: 0.9825 - val_loss: 0.0399 - val_accuracy: 1.0000 Epoch 80/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0694 - accuracy: 0.9825 - val_loss: 0.0302 - val_accuracy: 1.0000 Epoch 81/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0709 - accuracy: 0.9825 - val_loss: 0.0332 - val_accuracy: 1.0000 Epoch 82/800 114/114 [==============================] - 0s 869us/sample - loss: 0.0723 - accuracy: 0.9737 - val_loss: 0.0345 - val_accuracy: 1.0000 Epoch 83/800 114/114 [==============================] - 0s 898us/sample - loss: 0.0639 - accuracy: 0.9912 - val_loss: 0.0275 - val_accuracy: 1.0000 Epoch 84/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0700 - accuracy: 0.9737 - val_loss: 0.0315 - val_accuracy: 1.0000 Epoch 85/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0636 - accuracy: 0.9825 - val_loss: 0.0338 - val_accuracy: 1.0000 Epoch 86/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0623 - accuracy: 0.9825 - val_loss: 0.0288 - val_accuracy: 1.0000 Epoch 87/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0629 - accuracy: 0.9912 - val_loss: 0.0318 - val_accuracy: 1.0000 Epoch 88/800 114/114 [==============================] - 0s 866us/sample - loss: 0.0616 - accuracy: 0.9825 - val_loss: 0.0294 - val_accuracy: 1.0000 Epoch 89/800 114/114 [==============================] - 0s 896us/sample - loss: 0.0621 - accuracy: 0.9825 - val_loss: 0.0308 - val_accuracy: 1.0000 Epoch 90/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0643 - accuracy: 0.9825 - val_loss: 0.0248 - val_accuracy: 1.0000 Epoch 91/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0635 - accuracy: 0.9825 - val_loss: 0.0311 - val_accuracy: 1.0000 Epoch 92/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0637 - accuracy: 0.9825 - val_loss: 0.0263 - val_accuracy: 1.0000 Epoch 93/800 114/114 [==============================] - 0s 911us/sample - loss: 0.0595 - accuracy: 0.9825 - val_loss: 0.0292 - val_accuracy: 1.0000 Epoch 94/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0590 - accuracy: 0.9825 - val_loss: 0.0279 - val_accuracy: 1.0000 Epoch 95/800 114/114 [==============================] - 0s 871us/sample - loss: 0.0598 - accuracy: 0.9825 - val_loss: 0.0274 - val_accuracy: 1.0000 Epoch 96/800 114/114 [==============================] - 0s 906us/sample - loss: 0.0629 - accuracy: 0.9825 - val_loss: 0.0296 - val_accuracy: 1.0000 Epoch 97/800 114/114 [==============================] - 0s 854us/sample - loss: 0.0585 - accuracy: 0.9825 - val_loss: 0.0209 - val_accuracy: 1.0000 Epoch 98/800 114/114 [==============================] - 0s 895us/sample - loss: 0.0618 - accuracy: 0.9912 - val_loss: 0.0251 - val_accuracy: 1.0000 Epoch 99/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0649 - accuracy: 0.9825 - val_loss: 0.0333 - val_accuracy: 1.0000 Epoch 100/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0639 - accuracy: 0.9912 - val_loss: 0.0204 - val_accuracy: 1.0000 Epoch 101/800 114/114 [==============================] - 0s 870us/sample - loss: 0.0603 - accuracy: 0.9912 - val_loss: 0.0266 - val_accuracy: 1.0000 Epoch 102/800 114/114 [==============================] - 0s 897us/sample - loss: 0.0603 - accuracy: 0.9825 - val_loss: 0.0310 - val_accuracy: 1.0000 Epoch 103/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0592 - accuracy: 0.9825 - val_loss: 0.0202 - val_accuracy: 1.0000 Epoch 104/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0588 - accuracy: 0.9825 - val_loss: 0.0236 - val_accuracy: 1.0000 Epoch 105/800 114/114 [==============================] - 0s 869us/sample - loss: 0.0623 - accuracy: 0.9737 - val_loss: 0.0380 - val_accuracy: 1.0000 Epoch 106/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0578 - accuracy: 0.9825 - val_loss: 0.0224 - val_accuracy: 1.0000 Epoch 107/800 114/114 [==============================] - 0s 953us/sample - loss: 0.0560 - accuracy: 0.9912 - val_loss: 0.0196 - val_accuracy: 1.0000 Epoch 108/800 114/114 [==============================] - 0s 862us/sample - loss: 0.0656 - accuracy: 0.9825 - val_loss: 0.0210 - val_accuracy: 1.0000 Epoch 109/800 114/114 [==============================] - 0s 903us/sample - loss: 0.0631 - accuracy: 0.9825 - val_loss: 0.0408 - val_accuracy: 1.0000 Epoch 110/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0596 - accuracy: 0.9737 - val_loss: 0.0206 - val_accuracy: 1.0000 Epoch 111/800 114/114 [==============================] - 0s 865us/sample - loss: 0.0580 - accuracy: 0.9825 - val_loss: 0.0191 - val_accuracy: 1.0000 Epoch 112/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0561 - accuracy: 0.9825 - val_loss: 0.0239 - val_accuracy: 1.0000 Epoch 113/800 114/114 [==============================] - 0s 862us/sample - loss: 0.0551 - accuracy: 0.9825 - val_loss: 0.0295 - val_accuracy: 1.0000 Epoch 114/800 114/114 [==============================] - 0s 894us/sample - loss: 0.0580 - accuracy: 0.9825 - val_loss: 0.0266 - val_accuracy: 1.0000 Epoch 115/800 114/114 [==============================] - 0s 876us/sample - loss: 0.0606 - accuracy: 0.9912 - val_loss: 0.0169 - val_accuracy: 1.0000 Epoch 116/800 114/114 [==============================] - 0s 896us/sample - loss: 0.0605 - accuracy: 0.9825 - val_loss: 0.0292 - val_accuracy: 1.0000 Epoch 117/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0553 - accuracy: 0.9825 - val_loss: 0.0264 - val_accuracy: 1.0000 Epoch 118/800 114/114 [==============================] - 0s 925us/sample - loss: 0.0561 - accuracy: 0.9825 - val_loss: 0.0196 - val_accuracy: 1.0000 Epoch 119/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0575 - accuracy: 0.9825 - val_loss: 0.0214 - val_accuracy: 1.0000 Epoch 120/800 114/114 [==============================] - 0s 891us/sample - loss: 0.0584 - accuracy: 0.9825 - val_loss: 0.0360 - val_accuracy: 1.0000 Epoch 121/800 114/114 [==============================] - 0s 891us/sample - loss: 0.0619 - accuracy: 0.9737 - val_loss: 0.0225 - val_accuracy: 1.0000 Epoch 122/800 114/114 [==============================] - 0s 869us/sample - loss: 0.0508 - accuracy: 0.9912 - val_loss: 0.0147 - val_accuracy: 1.0000 Epoch 123/800 114/114 [==============================] - 0s 876us/sample - loss: 0.0641 - accuracy: 0.9825 - val_loss: 0.0172 - val_accuracy: 1.0000 Epoch 124/800 114/114 [==============================] - 0s 962us/sample - loss: 0.0544 - accuracy: 0.9737 - val_loss: 0.0327 - val_accuracy: 1.0000 Epoch 125/800 114/114 [==============================] - 0s 882us/sample - loss: 0.0635 - accuracy: 0.9737 - val_loss: 0.0299 - val_accuracy: 1.0000 Epoch 126/800 114/114 [==============================] - 0s 888us/sample - loss: 0.0519 - accuracy: 0.9825 - val_loss: 0.0166 - val_accuracy: 1.0000 Epoch 127/800 114/114 [==============================] - 0s 870us/sample - loss: 0.0620 - accuracy: 0.9825 - val_loss: 0.0133 - val_accuracy: 1.0000 Epoch 128/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0603 - accuracy: 0.9912 - val_loss: 0.0257 - val_accuracy: 1.0000 Epoch 129/800 114/114 [==============================] - 0s 926us/sample - loss: 0.0552 - accuracy: 0.9737 - val_loss: 0.0370 - val_accuracy: 1.0000 Epoch 130/800 114/114 [==============================] - 0s 920us/sample - loss: 0.0628 - accuracy: 0.9825 - val_loss: 0.0178 - val_accuracy: 1.0000 Epoch 131/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0546 - accuracy: 0.9825 - val_loss: 0.0199 - val_accuracy: 1.0000 Epoch 132/800 114/114 [==============================] - 0s 895us/sample - loss: 0.0546 - accuracy: 0.9825 - val_loss: 0.0328 - val_accuracy: 1.0000 Epoch 133/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0609 - accuracy: 0.9825 - val_loss: 0.0184 - val_accuracy: 1.0000 Epoch 134/800 114/114 [==============================] - 0s 886us/sample - loss: 0.0542 - accuracy: 0.9825 - val_loss: 0.0235 - val_accuracy: 1.0000 Epoch 135/800 114/114 [==============================] - 0s 902us/sample - loss: 0.0554 - accuracy: 0.9825 - val_loss: 0.0211 - val_accuracy: 1.0000 Epoch 136/800 114/114 [==============================] - 0s 869us/sample - loss: 0.0559 - accuracy: 0.9737 - val_loss: 0.0144 - val_accuracy: 1.0000 Epoch 137/800 114/114 [==============================] - 0s 911us/sample - loss: 0.0579 - accuracy: 0.9737 - val_loss: 0.0229 - val_accuracy: 1.0000 Epoch 138/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0569 - accuracy: 0.9825 - val_loss: 0.0292 - val_accuracy: 1.0000 Epoch 139/800 114/114 [==============================] - 0s 864us/sample - loss: 0.0520 - accuracy: 0.9825 - val_loss: 0.0173 - val_accuracy: 1.0000 Epoch 140/800 114/114 [==============================] - 0s 926us/sample - loss: 0.0618 - accuracy: 0.9825 - val_loss: 0.0132 - val_accuracy: 1.0000 Epoch 141/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0602 - accuracy: 0.9825 - val_loss: 0.0331 - val_accuracy: 1.0000 Epoch 142/800 114/114 [==============================] - 0s 889us/sample - loss: 0.0563 - accuracy: 0.9737 - val_loss: 0.0251 - val_accuracy: 1.0000 Epoch 143/800 114/114 [==============================] - 0s 895us/sample - loss: 0.0566 - accuracy: 0.9737 - val_loss: 0.0132 - val_accuracy: 1.0000 Epoch 144/800 114/114 [==============================] - 0s 888us/sample - loss: 0.0556 - accuracy: 0.9737 - val_loss: 0.0213 - val_accuracy: 1.0000 Epoch 145/800 114/114 [==============================] - 0s 872us/sample - loss: 0.0541 - accuracy: 0.9825 - val_loss: 0.0316 - val_accuracy: 1.0000 Epoch 146/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0530 - accuracy: 0.9825 - val_loss: 0.0195 - val_accuracy: 1.0000 Epoch 147/800 114/114 [==============================] - 0s 859us/sample - loss: 0.0652 - accuracy: 0.9737 - val_loss: 0.0137 - val_accuracy: 1.0000 Epoch 148/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0516 - accuracy: 0.9737 - val_loss: 0.0354 - val_accuracy: 1.0000 Epoch 149/800 114/114 [==============================] - 0s 900us/sample - loss: 0.0680 - accuracy: 0.9737 - val_loss: 0.0326 - val_accuracy: 1.0000 Epoch 150/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0566 - accuracy: 0.9912 - val_loss: 0.0121 - val_accuracy: 1.0000 Epoch 151/800 114/114 [==============================] - 0s 872us/sample - loss: 0.0582 - accuracy: 0.9825 - val_loss: 0.0181 - val_accuracy: 1.0000 Epoch 152/800 114/114 [==============================] - 0s 865us/sample - loss: 0.0508 - accuracy: 0.9825 - val_loss: 0.0265 - val_accuracy: 1.0000 Epoch 153/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0539 - accuracy: 0.9825 - val_loss: 0.0296 - val_accuracy: 1.0000 Epoch 154/800 114/114 [==============================] - 0s 896us/sample - loss: 0.0520 - accuracy: 0.9825 - val_loss: 0.0157 - val_accuracy: 1.0000 Epoch 155/800 114/114 [==============================] - 0s 920us/sample - loss: 0.0571 - accuracy: 0.9825 - val_loss: 0.0145 - val_accuracy: 1.0000 Epoch 156/800 114/114 [==============================] - 0s 891us/sample - loss: 0.0530 - accuracy: 0.9737 - val_loss: 0.0303 - val_accuracy: 1.0000 Epoch 157/800 114/114 [==============================] - 0s 887us/sample - loss: 0.0590 - accuracy: 0.9825 - val_loss: 0.0196 - val_accuracy: 1.0000 Epoch 158/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0502 - accuracy: 0.9825 - val_loss: 0.0239 - val_accuracy: 1.0000 Epoch 159/800 114/114 [==============================] - 0s 872us/sample - loss: 0.0557 - accuracy: 0.9825 - val_loss: 0.0207 - val_accuracy: 1.0000 Epoch 160/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0524 - accuracy: 0.9825 - val_loss: 0.0201 - val_accuracy: 1.0000 Epoch 161/800 114/114 [==============================] - 0s 891us/sample - loss: 0.0516 - accuracy: 0.9825 - val_loss: 0.0259 - val_accuracy: 1.0000 Epoch 162/800 114/114 [==============================] - 0s 899us/sample - loss: 0.0553 - accuracy: 0.9825 - val_loss: 0.0218 - val_accuracy: 1.0000 Epoch 163/800 114/114 [==============================] - 0s 869us/sample - loss: 0.0476 - accuracy: 0.9825 - val_loss: 0.0123 - val_accuracy: 1.0000 Epoch 164/800 114/114 [==============================] - 0s 887us/sample - loss: 0.0685 - accuracy: 0.9825 - val_loss: 0.0113 - val_accuracy: 1.0000 Epoch 165/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0660 - accuracy: 0.9649 - val_loss: 0.0432 - val_accuracy: 0.9524 Epoch 166/800 114/114 [==============================] - 0s 918us/sample - loss: 0.0584 - accuracy: 0.9737 - val_loss: 0.0228 - val_accuracy: 1.0000 Epoch 167/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0503 - accuracy: 0.9912 - val_loss: 0.0123 - val_accuracy: 1.0000 Epoch 168/800 114/114 [==============================] - 0s 921us/sample - loss: 0.0552 - accuracy: 0.9825 - val_loss: 0.0152 - val_accuracy: 1.0000 Epoch 169/800 114/114 [==============================] - 0s 812us/sample - loss: 0.0507 - accuracy: 0.9825 - val_loss: 0.0299 - val_accuracy: 1.0000 Epoch 170/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0549 - accuracy: 0.9825 - val_loss: 0.0227 - val_accuracy: 1.0000 Epoch 171/800 114/114 [==============================] - 0s 921us/sample - loss: 0.0509 - accuracy: 0.9825 - val_loss: 0.0233 - val_accuracy: 1.0000 Epoch 172/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0580 - accuracy: 0.9737 - val_loss: 0.0140 - val_accuracy: 1.0000 Epoch 173/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0532 - accuracy: 0.9825 - val_loss: 0.0231 - val_accuracy: 1.0000 Epoch 174/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0498 - accuracy: 0.9825 - val_loss: 0.0209 - val_accuracy: 1.0000 Epoch 175/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0531 - accuracy: 0.9825 - val_loss: 0.0150 - val_accuracy: 1.0000 Epoch 176/800 114/114 [==============================] - 0s 865us/sample - loss: 0.0581 - accuracy: 0.9825 - val_loss: 0.0244 - val_accuracy: 1.0000 Epoch 177/800 114/114 [==============================] - 0s 882us/sample - loss: 0.0511 - accuracy: 0.9825 - val_loss: 0.0173 - val_accuracy: 1.0000 Epoch 178/800 114/114 [==============================] - 0s 913us/sample - loss: 0.0529 - accuracy: 0.9825 - val_loss: 0.0116 - val_accuracy: 1.0000 Epoch 179/800 114/114 [==============================] - 0s 865us/sample - loss: 0.0527 - accuracy: 0.9825 - val_loss: 0.0174 - val_accuracy: 1.0000 Epoch 180/800 114/114 [==============================] - 0s 851us/sample - loss: 0.0535 - accuracy: 0.9825 - val_loss: 0.0324 - val_accuracy: 1.0000 Epoch 181/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0661 - accuracy: 0.9649 - val_loss: 0.0223 - val_accuracy: 1.0000 Epoch 182/800 114/114 [==============================] - 0s 944us/sample - loss: 0.0448 - accuracy: 0.9912 - val_loss: 0.0087 - val_accuracy: 1.0000 Epoch 183/800 114/114 [==============================] - 0s 872us/sample - loss: 0.0737 - accuracy: 0.9825 - val_loss: 0.0108 - val_accuracy: 1.0000 Epoch 184/800 114/114 [==============================] - 0s 868us/sample - loss: 0.0665 - accuracy: 0.9825 - val_loss: 0.0365 - val_accuracy: 1.0000 Epoch 185/800 114/114 [==============================] - 0s 897us/sample - loss: 0.0572 - accuracy: 0.9825 - val_loss: 0.0196 - val_accuracy: 1.0000 Epoch 186/800 114/114 [==============================] - 0s 888us/sample - loss: 0.0491 - accuracy: 0.9825 - val_loss: 0.0180 - val_accuracy: 1.0000 Epoch 187/800 114/114 [==============================] - 0s 899us/sample - loss: 0.0492 - accuracy: 0.9825 - val_loss: 0.0176 - val_accuracy: 1.0000 Epoch 188/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0495 - accuracy: 0.9825 - val_loss: 0.0168 - val_accuracy: 1.0000 Epoch 189/800 114/114 [==============================] - 0s 923us/sample - loss: 0.0512 - accuracy: 0.9825 - val_loss: 0.0177 - val_accuracy: 1.0000 Epoch 190/800 114/114 [==============================] - 0s 855us/sample - loss: 0.0478 - accuracy: 0.9825 - val_loss: 0.0255 - val_accuracy: 1.0000 Epoch 191/800 114/114 [==============================] - 0s 876us/sample - loss: 0.0514 - accuracy: 0.9825 - val_loss: 0.0269 - val_accuracy: 1.0000 Epoch 192/800 114/114 [==============================] - 0s 887us/sample - loss: 0.0490 - accuracy: 0.9825 - val_loss: 0.0163 - val_accuracy: 1.0000 Epoch 193/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0486 - accuracy: 0.9825 - val_loss: 0.0124 - val_accuracy: 1.0000 Epoch 194/800 114/114 [==============================] - 0s 891us/sample - loss: 0.0511 - accuracy: 0.9912 - val_loss: 0.0158 - val_accuracy: 1.0000 Epoch 195/800 114/114 [==============================] - 0s 858us/sample - loss: 0.0530 - accuracy: 0.9825 - val_loss: 0.0251 - val_accuracy: 1.0000 Epoch 196/800 114/114 [==============================] - 0s 872us/sample - loss: 0.0584 - accuracy: 0.9825 - val_loss: 0.0218 - val_accuracy: 1.0000 Epoch 197/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0470 - accuracy: 0.9912 - val_loss: 0.0110 - val_accuracy: 1.0000 Epoch 198/800 114/114 [==============================] - 0s 903us/sample - loss: 0.0558 - accuracy: 0.9825 - val_loss: 0.0115 - val_accuracy: 1.0000 Epoch 199/800 114/114 [==============================] - 0s 872us/sample - loss: 0.0603 - accuracy: 0.9825 - val_loss: 0.0292 - val_accuracy: 1.0000 Epoch 200/800 114/114 [==============================] - 0s 876us/sample - loss: 0.0528 - accuracy: 0.9825 - val_loss: 0.0194 - val_accuracy: 1.0000 Epoch 201/800 114/114 [==============================] - 0s 904us/sample - loss: 0.0500 - accuracy: 0.9912 - val_loss: 0.0112 - val_accuracy: 1.0000 Epoch 202/800 114/114 [==============================] - 0s 867us/sample - loss: 0.0568 - accuracy: 0.9825 - val_loss: 0.0118 - val_accuracy: 1.0000 Epoch 203/800 114/114 [==============================] - 0s 882us/sample - loss: 0.0534 - accuracy: 0.9825 - val_loss: 0.0350 - val_accuracy: 1.0000 Epoch 204/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0569 - accuracy: 0.9737 - val_loss: 0.0262 - val_accuracy: 1.0000 Epoch 205/800 114/114 [==============================] - 0s 909us/sample - loss: 0.0454 - accuracy: 0.9825 - val_loss: 0.0118 - val_accuracy: 1.0000 Epoch 206/800 114/114 [==============================] - 0s 893us/sample - loss: 0.0529 - accuracy: 0.9825 - val_loss: 0.0100 - val_accuracy: 1.0000 Epoch 207/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0521 - accuracy: 0.9825 - val_loss: 0.0180 - val_accuracy: 1.0000 Epoch 208/800 114/114 [==============================] - 0s 857us/sample - loss: 0.0509 - accuracy: 0.9737 - val_loss: 0.0376 - val_accuracy: 1.0000 Epoch 209/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0572 - accuracy: 0.9737 - val_loss: 0.0164 - val_accuracy: 1.0000 Epoch 210/800 114/114 [==============================] - 0s 940us/sample - loss: 0.0499 - accuracy: 0.9825 - val_loss: 0.0147 - val_accuracy: 1.0000 Epoch 211/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0508 - accuracy: 0.9825 - val_loss: 0.0184 - val_accuracy: 1.0000 Epoch 212/800 114/114 [==============================] - 0s 867us/sample - loss: 0.0482 - accuracy: 0.9825 - val_loss: 0.0187 - val_accuracy: 1.0000 Epoch 213/800 114/114 [==============================] - 0s 910us/sample - loss: 0.0534 - accuracy: 0.9825 - val_loss: 0.0206 - val_accuracy: 1.0000 Epoch 214/800 114/114 [==============================] - 0s 871us/sample - loss: 0.0477 - accuracy: 0.9825 - val_loss: 0.0170 - val_accuracy: 1.0000 Epoch 215/800 114/114 [==============================] - 0s 859us/sample - loss: 0.0494 - accuracy: 0.9825 - val_loss: 0.0148 - val_accuracy: 1.0000 Epoch 216/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0507 - accuracy: 0.9825 - val_loss: 0.0233 - val_accuracy: 1.0000 Epoch 217/800 114/114 [==============================] - 0s 906us/sample - loss: 0.0486 - accuracy: 0.9825 - val_loss: 0.0184 - val_accuracy: 1.0000 Epoch 218/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0484 - accuracy: 0.9825 - val_loss: 0.0146 - val_accuracy: 1.0000 Epoch 219/800 114/114 [==============================] - 0s 886us/sample - loss: 0.0487 - accuracy: 0.9825 - val_loss: 0.0205 - val_accuracy: 1.0000 Epoch 220/800 114/114 [==============================] - 0s 891us/sample - loss: 0.0479 - accuracy: 0.9825 - val_loss: 0.0212 - val_accuracy: 1.0000 Epoch 221/800 114/114 [==============================] - 0s 871us/sample - loss: 0.0533 - accuracy: 0.9825 - val_loss: 0.0151 - val_accuracy: 1.0000 Epoch 222/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0488 - accuracy: 0.9825 - val_loss: 0.0224 - val_accuracy: 1.0000 Epoch 223/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0487 - accuracy: 0.9825 - val_loss: 0.0236 - val_accuracy: 1.0000 Epoch 224/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0564 - accuracy: 0.9825 - val_loss: 0.0119 - val_accuracy: 1.0000 Epoch 225/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0521 - accuracy: 0.9825 - val_loss: 0.0216 - val_accuracy: 1.0000 Epoch 226/800 114/114 [==============================] - 0s 895us/sample - loss: 0.0508 - accuracy: 0.9825 - val_loss: 0.0260 - val_accuracy: 1.0000 Epoch 227/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0490 - accuracy: 0.9825 - val_loss: 0.0182 - val_accuracy: 1.0000 Epoch 228/800 114/114 [==============================] - 0s 866us/sample - loss: 0.0508 - accuracy: 0.9825 - val_loss: 0.0096 - val_accuracy: 1.0000 Epoch 229/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0531 - accuracy: 0.9825 - val_loss: 0.0145 - val_accuracy: 1.0000 Epoch 230/800 114/114 [==============================] - 0s 867us/sample - loss: 0.0542 - accuracy: 0.9825 - val_loss: 0.0388 - val_accuracy: 0.9524 Epoch 231/800 114/114 [==============================] - 0s 942us/sample - loss: 0.0550 - accuracy: 0.9737 - val_loss: 0.0169 - val_accuracy: 1.0000 Epoch 232/800 114/114 [==============================] - 0s 839us/sample - loss: 0.0540 - accuracy: 0.9737 - val_loss: 0.0128 - val_accuracy: 1.0000 Epoch 233/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0528 - accuracy: 0.9825 - val_loss: 0.0244 - val_accuracy: 1.0000 Epoch 234/800 114/114 [==============================] - 0s 928us/sample - loss: 0.0514 - accuracy: 0.9825 - val_loss: 0.0149 - val_accuracy: 1.0000 Epoch 235/800 114/114 [==============================] - 0s 857us/sample - loss: 0.0481 - accuracy: 0.9825 - val_loss: 0.0207 - val_accuracy: 1.0000 Epoch 236/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0474 - accuracy: 0.9825 - val_loss: 0.0200 - val_accuracy: 1.0000 Epoch 237/800 114/114 [==============================] - 0s 885us/sample - loss: 0.0466 - accuracy: 0.9825 - val_loss: 0.0159 - val_accuracy: 1.0000 Epoch 238/800 114/114 [==============================] - 0s 888us/sample - loss: 0.0509 - accuracy: 0.9912 - val_loss: 0.0132 - val_accuracy: 1.0000 Epoch 239/800 114/114 [==============================] - 0s 885us/sample - loss: 0.0481 - accuracy: 0.9825 - val_loss: 0.0196 - val_accuracy: 1.0000 Epoch 240/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0597 - accuracy: 0.9737 - val_loss: 0.0345 - val_accuracy: 1.0000 Epoch 241/800 114/114 [==============================] - 0s 885us/sample - loss: 0.0510 - accuracy: 0.9825 - val_loss: 0.0113 - val_accuracy: 1.0000 Epoch 242/800 114/114 [==============================] - 0s 931us/sample - loss: 0.0537 - accuracy: 0.9825 - val_loss: 0.0119 - val_accuracy: 1.0000 Epoch 243/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0468 - accuracy: 0.9825 - val_loss: 0.0230 - val_accuracy: 1.0000 Epoch 244/800 114/114 [==============================] - 0s 882us/sample - loss: 0.0504 - accuracy: 0.9825 - val_loss: 0.0310 - val_accuracy: 1.0000 Epoch 245/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0486 - accuracy: 0.9825 - val_loss: 0.0177 - val_accuracy: 1.0000 Epoch 246/800 114/114 [==============================] - 0s 927us/sample - loss: 0.0465 - accuracy: 0.9825 - val_loss: 0.0129 - val_accuracy: 1.0000 Epoch 247/800 114/114 [==============================] - 0s 920us/sample - loss: 0.0485 - accuracy: 0.9825 - val_loss: 0.0141 - val_accuracy: 1.0000 Epoch 248/800 114/114 [==============================] - 0s 861us/sample - loss: 0.0491 - accuracy: 0.9825 - val_loss: 0.0234 - val_accuracy: 1.0000 Epoch 249/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0514 - accuracy: 0.9825 - val_loss: 0.0180 - val_accuracy: 1.0000 Epoch 250/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0470 - accuracy: 0.9825 - val_loss: 0.0147 - val_accuracy: 1.0000 Epoch 251/800 114/114 [==============================] - 0s 958us/sample - loss: 0.0482 - accuracy: 0.9825 - val_loss: 0.0135 - val_accuracy: 1.0000 Epoch 252/800 114/114 [==============================] - 0s 888us/sample - loss: 0.0468 - accuracy: 0.9825 - val_loss: 0.0176 - val_accuracy: 1.0000 Epoch 253/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0479 - accuracy: 0.9825 - val_loss: 0.0208 - val_accuracy: 1.0000 Epoch 254/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0523 - accuracy: 0.9825 - val_loss: 0.0124 - val_accuracy: 1.0000 Epoch 255/800 114/114 [==============================] - 0s 868us/sample - loss: 0.0469 - accuracy: 0.9825 - val_loss: 0.0177 - val_accuracy: 1.0000 Epoch 256/800 114/114 [==============================] - 0s 867us/sample - loss: 0.0487 - accuracy: 0.9825 - val_loss: 0.0289 - val_accuracy: 1.0000 Epoch 257/800 114/114 [==============================] - 0s 864us/sample - loss: 0.0476 - accuracy: 0.9825 - val_loss: 0.0174 - val_accuracy: 1.0000 Epoch 258/800 114/114 [==============================] - 0s 952us/sample - loss: 0.0523 - accuracy: 0.9737 - val_loss: 0.0092 - val_accuracy: 1.0000 Epoch 259/800 114/114 [==============================] - 0s 865us/sample - loss: 0.0533 - accuracy: 0.9825 - val_loss: 0.0170 - val_accuracy: 1.0000 Epoch 260/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0521 - accuracy: 0.9825 - val_loss: 0.0330 - val_accuracy: 1.0000 Epoch 261/800 114/114 [==============================] - 0s 900us/sample - loss: 0.0563 - accuracy: 0.9825 - val_loss: 0.0114 - val_accuracy: 1.0000 Epoch 262/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0493 - accuracy: 0.9825 - val_loss: 0.0128 - val_accuracy: 1.0000 Epoch 263/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0486 - accuracy: 0.9825 - val_loss: 0.0204 - val_accuracy: 1.0000 Epoch 264/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0488 - accuracy: 0.9825 - val_loss: 0.0210 - val_accuracy: 1.0000 Epoch 265/800 114/114 [==============================] - 0s 956us/sample - loss: 0.0479 - accuracy: 0.9825 - val_loss: 0.0148 - val_accuracy: 1.0000 Epoch 266/800 114/114 [==============================] - 0s 862us/sample - loss: 0.0543 - accuracy: 0.9825 - val_loss: 0.0083 - val_accuracy: 1.0000 Epoch 267/800 114/114 [==============================] - 0s 906us/sample - loss: 0.0537 - accuracy: 0.9737 - val_loss: 0.0193 - val_accuracy: 1.0000 Epoch 268/800 114/114 [==============================] - 0s 860us/sample - loss: 0.0488 - accuracy: 0.9825 - val_loss: 0.0265 - val_accuracy: 1.0000 Epoch 269/800 114/114 [==============================] - 0s 887us/sample - loss: 0.0482 - accuracy: 0.9825 - val_loss: 0.0153 - val_accuracy: 1.0000 Epoch 270/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0505 - accuracy: 0.9825 - val_loss: 0.0159 - val_accuracy: 1.0000 Epoch 271/800 114/114 [==============================] - 0s 971us/sample - loss: 0.0455 - accuracy: 0.9825 - val_loss: 0.0128 - val_accuracy: 1.0000 Epoch 272/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0470 - accuracy: 0.9825 - val_loss: 0.0146 - val_accuracy: 1.0000 Epoch 273/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0473 - accuracy: 0.9825 - val_loss: 0.0154 - val_accuracy: 1.0000 Epoch 274/800 114/114 [==============================] - 0s 894us/sample - loss: 0.0512 - accuracy: 0.9825 - val_loss: 0.0250 - val_accuracy: 1.0000 Epoch 275/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0484 - accuracy: 0.9825 - val_loss: 0.0167 - val_accuracy: 1.0000 Epoch 276/800 114/114 [==============================] - 0s 924us/sample - loss: 0.0463 - accuracy: 0.9825 - val_loss: 0.0142 - val_accuracy: 1.0000 Epoch 277/800 114/114 [==============================] - 0s 915us/sample - loss: 0.0469 - accuracy: 0.9825 - val_loss: 0.0123 - val_accuracy: 1.0000 Epoch 278/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0488 - accuracy: 0.9825 - val_loss: 0.0194 - val_accuracy: 1.0000 Epoch 279/800 114/114 [==============================] - 0s 861us/sample - loss: 0.0464 - accuracy: 0.9825 - val_loss: 0.0175 - val_accuracy: 1.0000 Epoch 280/800 114/114 [==============================] - 0s 896us/sample - loss: 0.0482 - accuracy: 0.9825 - val_loss: 0.0129 - val_accuracy: 1.0000 Epoch 281/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0494 - accuracy: 0.9825 - val_loss: 0.0161 - val_accuracy: 1.0000 Epoch 282/800 114/114 [==============================] - 0s 902us/sample - loss: 0.0507 - accuracy: 0.9825 - val_loss: 0.0339 - val_accuracy: 1.0000 Epoch 283/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0534 - accuracy: 0.9825 - val_loss: 0.0188 - val_accuracy: 1.0000 Epoch 284/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0619 - accuracy: 0.9737 - val_loss: 0.0065 - val_accuracy: 1.0000 Epoch 285/800 114/114 [==============================] - 0s 888us/sample - loss: 0.0580 - accuracy: 0.9825 - val_loss: 0.0202 - val_accuracy: 1.0000 Epoch 286/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0514 - accuracy: 0.9825 - val_loss: 0.0345 - val_accuracy: 1.0000 Epoch 287/800 114/114 [==============================] - 0s 931us/sample - loss: 0.0524 - accuracy: 0.9825 - val_loss: 0.0147 - val_accuracy: 1.0000 Epoch 288/800 114/114 [==============================] - 0s 903us/sample - loss: 0.0480 - accuracy: 0.9912 - val_loss: 0.0113 - val_accuracy: 1.0000 Epoch 289/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0477 - accuracy: 0.9912 - val_loss: 0.0183 - val_accuracy: 1.0000 Epoch 290/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0474 - accuracy: 0.9825 - val_loss: 0.0218 - val_accuracy: 1.0000 Epoch 291/800 114/114 [==============================] - 0s 870us/sample - loss: 0.0462 - accuracy: 0.9825 - val_loss: 0.0203 - val_accuracy: 1.0000 Epoch 292/800 114/114 [==============================] - 0s 869us/sample - loss: 0.0496 - accuracy: 0.9825 - val_loss: 0.0139 - val_accuracy: 1.0000 Epoch 293/800 114/114 [==============================] - 0s 945us/sample - loss: 0.0455 - accuracy: 0.9825 - val_loss: 0.0180 - val_accuracy: 1.0000 Epoch 294/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0469 - accuracy: 0.9825 - val_loss: 0.0218 - val_accuracy: 1.0000 Epoch 295/800 114/114 [==============================] - 0s 888us/sample - loss: 0.0526 - accuracy: 0.9825 - val_loss: 0.0293 - val_accuracy: 1.0000 Epoch 296/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0499 - accuracy: 0.9825 - val_loss: 0.0101 - val_accuracy: 1.0000 Epoch 297/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0489 - accuracy: 0.9737 - val_loss: 0.0137 - val_accuracy: 1.0000 Epoch 298/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0456 - accuracy: 0.9825 - val_loss: 0.0165 - val_accuracy: 1.0000 Epoch 299/800 114/114 [==============================] - 0s 862us/sample - loss: 0.0536 - accuracy: 0.9825 - val_loss: 0.0245 - val_accuracy: 1.0000 Epoch 300/800 114/114 [==============================] - 0s 875us/sample - loss: 0.0470 - accuracy: 0.9825 - val_loss: 0.0125 - val_accuracy: 1.0000 Epoch 301/800 114/114 [==============================] - 0s 930us/sample - loss: 0.0496 - accuracy: 0.9825 - val_loss: 0.0157 - val_accuracy: 1.0000 Epoch 302/800 114/114 [==============================] - 0s 885us/sample - loss: 0.0453 - accuracy: 0.9825 - val_loss: 0.0154 - val_accuracy: 1.0000 Epoch 303/800 114/114 [==============================] - 0s 903us/sample - loss: 0.0495 - accuracy: 0.9825 - val_loss: 0.0220 - val_accuracy: 1.0000 Epoch 304/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0467 - accuracy: 0.9825 - val_loss: 0.0136 - val_accuracy: 1.0000 Epoch 305/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0469 - accuracy: 0.9912 - val_loss: 0.0139 - val_accuracy: 1.0000 Epoch 306/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0501 - accuracy: 0.9825 - val_loss: 0.0261 - val_accuracy: 1.0000 Epoch 307/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0459 - accuracy: 0.9825 - val_loss: 0.0165 - val_accuracy: 1.0000 Epoch 308/800 114/114 [==============================] - 0s 936us/sample - loss: 0.0446 - accuracy: 0.9825 - val_loss: 0.0109 - val_accuracy: 1.0000 Epoch 309/800 114/114 [==============================] - 0s 871us/sample - loss: 0.0506 - accuracy: 0.9825 - val_loss: 0.0121 - val_accuracy: 1.0000 Epoch 310/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0476 - accuracy: 0.9825 - val_loss: 0.0302 - val_accuracy: 1.0000 Epoch 311/800 114/114 [==============================] - 0s 897us/sample - loss: 0.0499 - accuracy: 0.9825 - val_loss: 0.0238 - val_accuracy: 1.0000 Epoch 312/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0438 - accuracy: 0.9825 - val_loss: 0.0104 - val_accuracy: 1.0000 Epoch 313/800 114/114 [==============================] - 0s 868us/sample - loss: 0.0551 - accuracy: 0.9825 - val_loss: 0.0090 - val_accuracy: 1.0000 Epoch 314/800 114/114 [==============================] - 0s 911us/sample - loss: 0.0442 - accuracy: 0.9912 - val_loss: 0.0281 - val_accuracy: 1.0000 Epoch 315/800 114/114 [==============================] - 0s 902us/sample - loss: 0.0723 - accuracy: 0.9649 - val_loss: 0.0400 - val_accuracy: 0.9524 Epoch 316/800 114/114 [==============================] - 0s 875us/sample - loss: 0.0414 - accuracy: 0.9737 - val_loss: 0.0070 - val_accuracy: 1.0000 Epoch 317/800 114/114 [==============================] - 0s 886us/sample - loss: 0.0726 - accuracy: 0.9737 - val_loss: 0.0059 - val_accuracy: 1.0000 Epoch 318/800 114/114 [==============================] - 0s 868us/sample - loss: 0.0574 - accuracy: 0.9825 - val_loss: 0.0232 - val_accuracy: 1.0000 Epoch 319/800 114/114 [==============================] - 0s 903us/sample - loss: 0.0590 - accuracy: 0.9737 - val_loss: 0.0394 - val_accuracy: 0.9524 Epoch 320/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0485 - accuracy: 0.9825 - val_loss: 0.0115 - val_accuracy: 1.0000 Epoch 321/800 114/114 [==============================] - 0s 860us/sample - loss: 0.0500 - accuracy: 0.9912 - val_loss: 0.0070 - val_accuracy: 1.0000 Epoch 322/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0509 - accuracy: 0.9825 - val_loss: 0.0153 - val_accuracy: 1.0000 Epoch 323/800 114/114 [==============================] - 0s 946us/sample - loss: 0.0518 - accuracy: 0.9825 - val_loss: 0.0332 - val_accuracy: 1.0000 Epoch 324/800 114/114 [==============================] - 0s 840us/sample - loss: 0.0490 - accuracy: 0.9825 - val_loss: 0.0177 - val_accuracy: 1.0000 Epoch 325/800 114/114 [==============================] - 0s 921us/sample - loss: 0.0436 - accuracy: 0.9825 - val_loss: 0.0091 - val_accuracy: 1.0000 Epoch 326/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0496 - accuracy: 0.9912 - val_loss: 0.0092 - val_accuracy: 1.0000 Epoch 327/800 114/114 [==============================] - 0s 867us/sample - loss: 0.0500 - accuracy: 0.9825 - val_loss: 0.0213 - val_accuracy: 1.0000 Epoch 328/800 114/114 [==============================] - 0s 893us/sample - loss: 0.0663 - accuracy: 0.9649 - val_loss: 0.0330 - val_accuracy: 1.0000 Epoch 329/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0459 - accuracy: 0.9825 - val_loss: 0.0073 - val_accuracy: 1.0000 Epoch 330/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0736 - accuracy: 0.9737 - val_loss: 0.0063 - val_accuracy: 1.0000 Epoch 331/800 114/114 [==============================] - 0s 894us/sample - loss: 0.0481 - accuracy: 0.9912 - val_loss: 0.0273 - val_accuracy: 1.0000 Epoch 332/800 114/114 [==============================] - 0s 886us/sample - loss: 0.0735 - accuracy: 0.9649 - val_loss: 0.0434 - val_accuracy: 0.9524 Epoch 333/800 114/114 [==============================] - 0s 859us/sample - loss: 0.0417 - accuracy: 0.9737 - val_loss: 0.0088 - val_accuracy: 1.0000 Epoch 334/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0630 - accuracy: 0.9825 - val_loss: 0.0062 - val_accuracy: 1.0000 Epoch 335/800 114/114 [==============================] - 0s 930us/sample - loss: 0.0524 - accuracy: 0.9912 - val_loss: 0.0187 - val_accuracy: 1.0000 Epoch 336/800 114/114 [==============================] - 0s 908us/sample - loss: 0.0514 - accuracy: 0.9737 - val_loss: 0.0405 - val_accuracy: 0.9524 Epoch 337/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0548 - accuracy: 0.9825 - val_loss: 0.0134 - val_accuracy: 1.0000 Epoch 338/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0512 - accuracy: 0.9737 - val_loss: 0.0092 - val_accuracy: 1.0000 Epoch 339/800 114/114 [==============================] - 0s 862us/sample - loss: 0.0502 - accuracy: 0.9825 - val_loss: 0.0160 - val_accuracy: 1.0000 Epoch 340/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0441 - accuracy: 0.9825 - val_loss: 0.0272 - val_accuracy: 1.0000 Epoch 341/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0471 - accuracy: 0.9825 - val_loss: 0.0263 - val_accuracy: 1.0000 Epoch 342/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0491 - accuracy: 0.9825 - val_loss: 0.0123 - val_accuracy: 1.0000 Epoch 343/800 114/114 [==============================] - 0s 833us/sample - loss: 0.0506 - accuracy: 0.9737 - val_loss: 0.0102 - val_accuracy: 1.0000 Epoch 344/800 114/114 [==============================] - 0s 919us/sample - loss: 0.0492 - accuracy: 0.9825 - val_loss: 0.0234 - val_accuracy: 1.0000 Epoch 345/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0462 - accuracy: 0.9825 - val_loss: 0.0213 - val_accuracy: 1.0000 Epoch 346/800 114/114 [==============================] - 0s 865us/sample - loss: 0.0450 - accuracy: 0.9825 - val_loss: 0.0127 - val_accuracy: 1.0000 Epoch 347/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0453 - accuracy: 0.9825 - val_loss: 0.0156 - val_accuracy: 1.0000 Epoch 348/800 114/114 [==============================] - 0s 950us/sample - loss: 0.0442 - accuracy: 0.9825 - val_loss: 0.0159 - val_accuracy: 1.0000 Epoch 349/800 114/114 [==============================] - 0s 891us/sample - loss: 0.0498 - accuracy: 0.9825 - val_loss: 0.0239 - val_accuracy: 1.0000 Epoch 350/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0448 - accuracy: 0.9825 - val_loss: 0.0136 - val_accuracy: 1.0000 Epoch 351/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0441 - accuracy: 0.9825 - val_loss: 0.0122 - val_accuracy: 1.0000 Epoch 352/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0447 - accuracy: 0.9825 - val_loss: 0.0145 - val_accuracy: 1.0000 Epoch 353/800 114/114 [==============================] - 0s 897us/sample - loss: 0.0597 - accuracy: 0.9825 - val_loss: 0.0285 - val_accuracy: 1.0000 Epoch 354/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0427 - accuracy: 0.9825 - val_loss: 0.0126 - val_accuracy: 1.0000 Epoch 355/800 114/114 [==============================] - 0s 928us/sample - loss: 0.0488 - accuracy: 0.9825 - val_loss: 0.0071 - val_accuracy: 1.0000 Epoch 356/800 114/114 [==============================] - 0s 891us/sample - loss: 0.0519 - accuracy: 0.9825 - val_loss: 0.0145 - val_accuracy: 1.0000 Epoch 357/800 114/114 [==============================] - 0s 856us/sample - loss: 0.0444 - accuracy: 0.9825 - val_loss: 0.0265 - val_accuracy: 1.0000 Epoch 358/800 114/114 [==============================] - 0s 895us/sample - loss: 0.0460 - accuracy: 0.9825 - val_loss: 0.0199 - val_accuracy: 1.0000 Epoch 359/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0437 - accuracy: 0.9825 - val_loss: 0.0142 - val_accuracy: 1.0000 Epoch 360/800 114/114 [==============================] - 0s 921us/sample - loss: 0.0455 - accuracy: 0.9825 - val_loss: 0.0131 - val_accuracy: 1.0000 Epoch 361/800 114/114 [==============================] - 0s 930us/sample - loss: 0.0435 - accuracy: 0.9825 - val_loss: 0.0187 - val_accuracy: 1.0000 Epoch 362/800 114/114 [==============================] - 0s 850us/sample - loss: 0.0583 - accuracy: 0.9825 - val_loss: 0.0328 - val_accuracy: 1.0000 Epoch 363/800 114/114 [==============================] - 0s 895us/sample - loss: 0.0444 - accuracy: 0.9825 - val_loss: 0.0140 - val_accuracy: 1.0000 Epoch 364/800 114/114 [==============================] - 0s 872us/sample - loss: 0.0469 - accuracy: 0.9825 - val_loss: 0.0060 - val_accuracy: 1.0000 Epoch 365/800 114/114 [==============================] - 0s 923us/sample - loss: 0.0554 - accuracy: 0.9825 - val_loss: 0.0099 - val_accuracy: 1.0000 Epoch 366/800 114/114 [==============================] - 0s 876us/sample - loss: 0.0415 - accuracy: 0.9912 - val_loss: 0.0214 - val_accuracy: 1.0000 Epoch 367/800 114/114 [==============================] - 0s 898us/sample - loss: 0.0434 - accuracy: 0.9825 - val_loss: 0.0334 - val_accuracy: 1.0000 Epoch 368/800 114/114 [==============================] - 0s 871us/sample - loss: 0.0492 - accuracy: 0.9825 - val_loss: 0.0214 - val_accuracy: 1.0000 Epoch 369/800 114/114 [==============================] - 0s 909us/sample - loss: 0.0440 - accuracy: 0.9825 - val_loss: 0.0134 - val_accuracy: 1.0000 Epoch 370/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0459 - accuracy: 0.9825 - val_loss: 0.0113 - val_accuracy: 1.0000 Epoch 371/800 114/114 [==============================] - 0s 929us/sample - loss: 0.0440 - accuracy: 0.9825 - val_loss: 0.0178 - val_accuracy: 1.0000 Epoch 372/800 114/114 [==============================] - 0s 895us/sample - loss: 0.0442 - accuracy: 0.9825 - val_loss: 0.0231 - val_accuracy: 1.0000 Epoch 373/800 114/114 [==============================] - 0s 901us/sample - loss: 0.0442 - accuracy: 0.9825 - val_loss: 0.0162 - val_accuracy: 1.0000 Epoch 374/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0432 - accuracy: 0.9825 - val_loss: 0.0119 - val_accuracy: 1.0000 Epoch 375/800 114/114 [==============================] - 0s 847us/sample - loss: 0.0459 - accuracy: 0.9825 - val_loss: 0.0150 - val_accuracy: 1.0000 Epoch 376/800 114/114 [==============================] - 0s 893us/sample - loss: 0.0449 - accuracy: 0.9825 - val_loss: 0.0143 - val_accuracy: 1.0000 Epoch 377/800 114/114 [==============================] - 0s 882us/sample - loss: 0.0510 - accuracy: 0.9825 - val_loss: 0.0245 - val_accuracy: 1.0000 Epoch 378/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0456 - accuracy: 0.9825 - val_loss: 0.0157 - val_accuracy: 1.0000 Epoch 379/800 114/114 [==============================] - 0s 906us/sample - loss: 0.0426 - accuracy: 0.9825 - val_loss: 0.0124 - val_accuracy: 1.0000 Epoch 380/800 114/114 [==============================] - 0s 896us/sample - loss: 0.0490 - accuracy: 0.9737 - val_loss: 0.0111 - val_accuracy: 1.0000 Epoch 381/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0425 - accuracy: 0.9825 - val_loss: 0.0256 - val_accuracy: 1.0000 Epoch 382/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0536 - accuracy: 0.9825 - val_loss: 0.0285 - val_accuracy: 1.0000 Epoch 383/800 114/114 [==============================] - 0s 870us/sample - loss: 0.0627 - accuracy: 0.9737 - val_loss: 0.0072 - val_accuracy: 1.0000 Epoch 384/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0547 - accuracy: 0.9737 - val_loss: 0.0140 - val_accuracy: 1.0000 Epoch 385/800 114/114 [==============================] - 0s 882us/sample - loss: 0.0510 - accuracy: 0.9825 - val_loss: 0.0246 - val_accuracy: 1.0000 Epoch 386/800 114/114 [==============================] - 0s 927us/sample - loss: 0.0429 - accuracy: 0.9825 - val_loss: 0.0126 - val_accuracy: 1.0000 Epoch 387/800 114/114 [==============================] - 0s 862us/sample - loss: 0.0436 - accuracy: 0.9825 - val_loss: 0.0115 - val_accuracy: 1.0000 Epoch 388/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0457 - accuracy: 0.9825 - val_loss: 0.0154 - val_accuracy: 1.0000 Epoch 389/800 114/114 [==============================] - 0s 872us/sample - loss: 0.0430 - accuracy: 0.9825 - val_loss: 0.0170 - val_accuracy: 1.0000 Epoch 390/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0450 - accuracy: 0.9825 - val_loss: 0.0128 - val_accuracy: 1.0000 Epoch 391/800 114/114 [==============================] - 0s 837us/sample - loss: 0.0427 - accuracy: 0.9825 - val_loss: 0.0162 - val_accuracy: 1.0000 Epoch 392/800 114/114 [==============================] - 0s 930us/sample - loss: 0.0436 - accuracy: 0.9825 - val_loss: 0.0185 - val_accuracy: 1.0000 Epoch 393/800 114/114 [==============================] - 0s 851us/sample - loss: 0.0469 - accuracy: 0.9825 - val_loss: 0.0174 - val_accuracy: 1.0000 Epoch 394/800 114/114 [==============================] - 0s 906us/sample - loss: 0.0405 - accuracy: 0.9825 - val_loss: 0.0107 - val_accuracy: 1.0000 Epoch 395/800 114/114 [==============================] - 0s 882us/sample - loss: 0.0532 - accuracy: 0.9825 - val_loss: 0.0079 - val_accuracy: 1.0000 Epoch 396/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0432 - accuracy: 0.9912 - val_loss: 0.0189 - val_accuracy: 1.0000 Epoch 397/800 114/114 [==============================] - 0s 922us/sample - loss: 0.0557 - accuracy: 0.9825 - val_loss: 0.0353 - val_accuracy: 1.0000 Epoch 398/800 114/114 [==============================] - 0s 868us/sample - loss: 0.0482 - accuracy: 0.9825 - val_loss: 0.0129 - val_accuracy: 1.0000 Epoch 399/800 114/114 [==============================] - 0s 888us/sample - loss: 0.0569 - accuracy: 0.9737 - val_loss: 0.0078 - val_accuracy: 1.0000 Epoch 400/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0518 - accuracy: 0.9737 - val_loss: 0.0283 - val_accuracy: 1.0000 Epoch 401/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0464 - accuracy: 0.9825 - val_loss: 0.0266 - val_accuracy: 1.0000 Epoch 402/800 114/114 [==============================] - 0s 871us/sample - loss: 0.0450 - accuracy: 0.9825 - val_loss: 0.0186 - val_accuracy: 1.0000 Epoch 403/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0413 - accuracy: 0.9825 - val_loss: 0.0093 - val_accuracy: 1.0000 Epoch 404/800 114/114 [==============================] - 0s 926us/sample - loss: 0.0468 - accuracy: 0.9912 - val_loss: 0.0110 - val_accuracy: 1.0000 Epoch 405/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0455 - accuracy: 0.9825 - val_loss: 0.0195 - val_accuracy: 1.0000 Epoch 406/800 114/114 [==============================] - 0s 859us/sample - loss: 0.0439 - accuracy: 0.9825 - val_loss: 0.0184 - val_accuracy: 1.0000 Epoch 407/800 114/114 [==============================] - 0s 893us/sample - loss: 0.0457 - accuracy: 0.9825 - val_loss: 0.0190 - val_accuracy: 1.0000 Epoch 408/800 114/114 [==============================] - 0s 889us/sample - loss: 0.0491 - accuracy: 0.9825 - val_loss: 0.0091 - val_accuracy: 1.0000 Epoch 409/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0474 - accuracy: 0.9825 - val_loss: 0.0151 - val_accuracy: 1.0000 Epoch 410/800 114/114 [==============================] - 0s 948us/sample - loss: 0.0530 - accuracy: 0.9825 - val_loss: 0.0282 - val_accuracy: 1.0000 Epoch 411/800 114/114 [==============================] - 0s 871us/sample - loss: 0.0446 - accuracy: 0.9825 - val_loss: 0.0164 - val_accuracy: 1.0000 Epoch 412/800 114/114 [==============================] - 0s 899us/sample - loss: 0.0446 - accuracy: 0.9825 - val_loss: 0.0081 - val_accuracy: 1.0000 Epoch 413/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0510 - accuracy: 0.9825 - val_loss: 0.0137 - val_accuracy: 1.0000 Epoch 414/800 114/114 [==============================] - 0s 866us/sample - loss: 0.0434 - accuracy: 0.9825 - val_loss: 0.0136 - val_accuracy: 1.0000 Epoch 415/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0420 - accuracy: 0.9825 - val_loss: 0.0203 - val_accuracy: 1.0000 Epoch 416/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0449 - accuracy: 0.9825 - val_loss: 0.0150 - val_accuracy: 1.0000 Epoch 417/800 114/114 [==============================] - 0s 925us/sample - loss: 0.0447 - accuracy: 0.9825 - val_loss: 0.0179 - val_accuracy: 1.0000 Epoch 418/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0416 - accuracy: 0.9825 - val_loss: 0.0131 - val_accuracy: 1.0000 Epoch 419/800 114/114 [==============================] - 0s 903us/sample - loss: 0.0438 - accuracy: 0.9825 - val_loss: 0.0126 - val_accuracy: 1.0000 Epoch 420/800 114/114 [==============================] - 0s 849us/sample - loss: 0.0456 - accuracy: 0.9825 - val_loss: 0.0208 - val_accuracy: 1.0000 Epoch 421/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0423 - accuracy: 0.9825 - val_loss: 0.0171 - val_accuracy: 1.0000 Epoch 422/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0422 - accuracy: 0.9825 - val_loss: 0.0121 - val_accuracy: 1.0000 Epoch 423/800 114/114 [==============================] - 0s 967us/sample - loss: 0.0445 - accuracy: 0.9825 - val_loss: 0.0152 - val_accuracy: 1.0000 Epoch 424/800 114/114 [==============================] - 0s 867us/sample - loss: 0.0430 - accuracy: 0.9825 - val_loss: 0.0131 - val_accuracy: 1.0000 Epoch 425/800 114/114 [==============================] - 0s 858us/sample - loss: 0.0444 - accuracy: 0.9825 - val_loss: 0.0184 - val_accuracy: 1.0000 Epoch 426/800 114/114 [==============================] - 0s 891us/sample - loss: 0.0440 - accuracy: 0.9825 - val_loss: 0.0169 - val_accuracy: 1.0000 Epoch 427/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0407 - accuracy: 0.9825 - val_loss: 0.0113 - val_accuracy: 1.0000 Epoch 428/800 114/114 [==============================] - 0s 954us/sample - loss: 0.0445 - accuracy: 0.9912 - val_loss: 0.0108 - val_accuracy: 1.0000 Epoch 429/800 114/114 [==============================] - 0s 854us/sample - loss: 0.0453 - accuracy: 0.9825 - val_loss: 0.0198 - val_accuracy: 1.0000 Epoch 430/800 114/114 [==============================] - 0s 898us/sample - loss: 0.0445 - accuracy: 0.9825 - val_loss: 0.0155 - val_accuracy: 1.0000 Epoch 431/800 114/114 [==============================] - 0s 901us/sample - loss: 0.0424 - accuracy: 0.9825 - val_loss: 0.0157 - val_accuracy: 1.0000 Epoch 432/800 114/114 [==============================] - 0s 853us/sample - loss: 0.0423 - accuracy: 0.9825 - val_loss: 0.0163 - val_accuracy: 1.0000 Epoch 433/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0540 - accuracy: 0.9825 - val_loss: 0.0260 - val_accuracy: 1.0000 Epoch 434/800 114/114 [==============================] - 0s 941us/sample - loss: 0.0413 - accuracy: 0.9825 - val_loss: 0.0136 - val_accuracy: 1.0000 Epoch 435/800 114/114 [==============================] - 0s 885us/sample - loss: 0.0431 - accuracy: 0.9825 - val_loss: 0.0072 - val_accuracy: 1.0000 Epoch 436/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0519 - accuracy: 0.9825 - val_loss: 0.0106 - val_accuracy: 1.0000 Epoch 437/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0405 - accuracy: 0.9912 - val_loss: 0.0268 - val_accuracy: 1.0000 Epoch 438/800 114/114 [==============================] - 0s 870us/sample - loss: 0.0569 - accuracy: 0.9737 - val_loss: 0.0338 - val_accuracy: 1.0000 Epoch 439/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0490 - accuracy: 0.9825 - val_loss: 0.0069 - val_accuracy: 1.0000 Epoch 440/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0501 - accuracy: 0.9825 - val_loss: 0.0078 - val_accuracy: 1.0000 Epoch 441/800 114/114 [==============================] - 0s 911us/sample - loss: 0.0456 - accuracy: 0.9912 - val_loss: 0.0139 - val_accuracy: 1.0000 Epoch 442/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0487 - accuracy: 0.9825 - val_loss: 0.0338 - val_accuracy: 1.0000 Epoch 443/800 114/114 [==============================] - 0s 885us/sample - loss: 0.0496 - accuracy: 0.9825 - val_loss: 0.0159 - val_accuracy: 1.0000 Epoch 444/800 114/114 [==============================] - 0s 870us/sample - loss: 0.0425 - accuracy: 0.9825 - val_loss: 0.0142 - val_accuracy: 1.0000 Epoch 445/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0431 - accuracy: 0.9825 - val_loss: 0.0109 - val_accuracy: 1.0000 Epoch 446/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0433 - accuracy: 0.9825 - val_loss: 0.0178 - val_accuracy: 1.0000 Epoch 447/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0460 - accuracy: 0.9825 - val_loss: 0.0210 - val_accuracy: 1.0000 Epoch 448/800 114/114 [==============================] - 0s 861us/sample - loss: 0.0400 - accuracy: 0.9825 - val_loss: 0.0113 - val_accuracy: 1.0000 Epoch 449/800 114/114 [==============================] - 0s 895us/sample - loss: 0.0470 - accuracy: 0.9825 - val_loss: 0.0076 - val_accuracy: 1.0000 Epoch 450/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0430 - accuracy: 0.9912 - val_loss: 0.0164 - val_accuracy: 1.0000 Epoch 451/800 114/114 [==============================] - 0s 871us/sample - loss: 0.0429 - accuracy: 0.9825 - val_loss: 0.0310 - val_accuracy: 1.0000 Epoch 452/800 114/114 [==============================] - 0s 931us/sample - loss: 0.0461 - accuracy: 0.9825 - val_loss: 0.0178 - val_accuracy: 1.0000 Epoch 453/800 114/114 [==============================] - 0s 910us/sample - loss: 0.0404 - accuracy: 0.9825 - val_loss: 0.0121 - val_accuracy: 1.0000 Epoch 454/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0511 - accuracy: 0.9825 - val_loss: 0.0075 - val_accuracy: 1.0000 Epoch 455/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0464 - accuracy: 0.9737 - val_loss: 0.0207 - val_accuracy: 1.0000 Epoch 456/800 114/114 [==============================] - 0s 889us/sample - loss: 0.0414 - accuracy: 0.9825 - val_loss: 0.0261 - val_accuracy: 1.0000 Epoch 457/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0474 - accuracy: 0.9825 - val_loss: 0.0214 - val_accuracy: 1.0000 Epoch 458/800 114/114 [==============================] - 0s 914us/sample - loss: 0.0400 - accuracy: 0.9825 - val_loss: 0.0113 - val_accuracy: 1.0000 Epoch 459/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0428 - accuracy: 0.9912 - val_loss: 0.0091 - val_accuracy: 1.0000 Epoch 460/800 114/114 [==============================] - 0s 893us/sample - loss: 0.0469 - accuracy: 0.9825 - val_loss: 0.0147 - val_accuracy: 1.0000 Epoch 461/800 114/114 [==============================] - 0s 860us/sample - loss: 0.0408 - accuracy: 0.9825 - val_loss: 0.0214 - val_accuracy: 1.0000 Epoch 462/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0420 - accuracy: 0.9825 - val_loss: 0.0183 - val_accuracy: 1.0000 Epoch 463/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0467 - accuracy: 0.9825 - val_loss: 0.0099 - val_accuracy: 1.0000 Epoch 464/800 114/114 [==============================] - 0s 897us/sample - loss: 0.0424 - accuracy: 0.9825 - val_loss: 0.0145 - val_accuracy: 1.0000 Epoch 465/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0430 - accuracy: 0.9825 - val_loss: 0.0211 - val_accuracy: 1.0000 Epoch 466/800 114/114 [==============================] - 0s 864us/sample - loss: 0.0421 - accuracy: 0.9825 - val_loss: 0.0150 - val_accuracy: 1.0000 Epoch 467/800 114/114 [==============================] - 0s 906us/sample - loss: 0.0448 - accuracy: 0.9825 - val_loss: 0.0108 - val_accuracy: 1.0000 Epoch 468/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0415 - accuracy: 0.9825 - val_loss: 0.0196 - val_accuracy: 1.0000 Epoch 469/800 114/114 [==============================] - 0s 870us/sample - loss: 0.0461 - accuracy: 0.9825 - val_loss: 0.0286 - val_accuracy: 1.0000 Epoch 470/800 114/114 [==============================] - 0s 929us/sample - loss: 0.0512 - accuracy: 0.9825 - val_loss: 0.0087 - val_accuracy: 1.0000 Epoch 471/800 114/114 [==============================] - 0s 931us/sample - loss: 0.0445 - accuracy: 0.9912 - val_loss: 0.0116 - val_accuracy: 1.0000 Epoch 472/800 114/114 [==============================] - 0s 866us/sample - loss: 0.0408 - accuracy: 0.9825 - val_loss: 0.0207 - val_accuracy: 1.0000 Epoch 473/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0416 - accuracy: 0.9825 - val_loss: 0.0209 - val_accuracy: 1.0000 Epoch 474/800 114/114 [==============================] - 0s 886us/sample - loss: 0.0426 - accuracy: 0.9825 - val_loss: 0.0165 - val_accuracy: 1.0000 Epoch 475/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0410 - accuracy: 0.9825 - val_loss: 0.0153 - val_accuracy: 1.0000 Epoch 476/800 114/114 [==============================] - 0s 949us/sample - loss: 0.0421 - accuracy: 0.9825 - val_loss: 0.0179 - val_accuracy: 1.0000 Epoch 477/800 114/114 [==============================] - 0s 885us/sample - loss: 0.0456 - accuracy: 0.9825 - val_loss: 0.0190 - val_accuracy: 1.0000 Epoch 478/800 114/114 [==============================] - 0s 887us/sample - loss: 0.0479 - accuracy: 0.9825 - val_loss: 0.0092 - val_accuracy: 1.0000 Epoch 479/800 114/114 [==============================] - 0s 864us/sample - loss: 0.0425 - accuracy: 0.9825 - val_loss: 0.0159 - val_accuracy: 1.0000 Epoch 480/800 114/114 [==============================] - 0s 885us/sample - loss: 0.0425 - accuracy: 0.9825 - val_loss: 0.0181 - val_accuracy: 1.0000 Epoch 481/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0427 - accuracy: 0.9825 - val_loss: 0.0248 - val_accuracy: 1.0000 Epoch 482/800 114/114 [==============================] - 0s 924us/sample - loss: 0.0432 - accuracy: 0.9825 - val_loss: 0.0164 - val_accuracy: 1.0000 Epoch 483/800 114/114 [==============================] - 0s 926us/sample - loss: 0.0394 - accuracy: 0.9825 - val_loss: 0.0116 - val_accuracy: 1.0000 Epoch 484/800 114/114 [==============================] - 0s 835us/sample - loss: 0.0431 - accuracy: 0.9825 - val_loss: 0.0123 - val_accuracy: 1.0000 Epoch 485/800 114/114 [==============================] - 0s 917us/sample - loss: 0.0433 - accuracy: 0.9825 - val_loss: 0.0123 - val_accuracy: 1.0000 Epoch 486/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0403 - accuracy: 0.9825 - val_loss: 0.0166 - val_accuracy: 1.0000 Epoch 487/800 114/114 [==============================] - 0s 870us/sample - loss: 0.0413 - accuracy: 0.9825 - val_loss: 0.0215 - val_accuracy: 1.0000 Epoch 488/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0406 - accuracy: 0.9825 - val_loss: 0.0145 - val_accuracy: 1.0000 Epoch 489/800 114/114 [==============================] - 0s 905us/sample - loss: 0.0430 - accuracy: 0.9912 - val_loss: 0.0106 - val_accuracy: 1.0000 Epoch 490/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0448 - accuracy: 0.9825 - val_loss: 0.0189 - val_accuracy: 1.0000 Epoch 491/800 114/114 [==============================] - 0s 894us/sample - loss: 0.0464 - accuracy: 0.9825 - val_loss: 0.0118 - val_accuracy: 1.0000 Epoch 492/800 114/114 [==============================] - 0s 876us/sample - loss: 0.0411 - accuracy: 0.9825 - val_loss: 0.0196 - val_accuracy: 1.0000 Epoch 493/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0407 - accuracy: 0.9825 - val_loss: 0.0182 - val_accuracy: 1.0000 Epoch 494/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0420 - accuracy: 0.9825 - val_loss: 0.0140 - val_accuracy: 1.0000 Epoch 495/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0406 - accuracy: 0.9825 - val_loss: 0.0140 - val_accuracy: 1.0000 Epoch 496/800 114/114 [==============================] - 0s 876us/sample - loss: 0.0406 - accuracy: 0.9825 - val_loss: 0.0173 - val_accuracy: 1.0000 Epoch 497/800 114/114 [==============================] - 0s 871us/sample - loss: 0.0402 - accuracy: 0.9825 - val_loss: 0.0179 - val_accuracy: 1.0000 Epoch 498/800 114/114 [==============================] - 0s 897us/sample - loss: 0.0402 - accuracy: 0.9825 - val_loss: 0.0157 - val_accuracy: 1.0000 Epoch 499/800 114/114 [==============================] - 0s 887us/sample - loss: 0.0459 - accuracy: 0.9825 - val_loss: 0.0108 - val_accuracy: 1.0000 Epoch 500/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0449 - accuracy: 0.9825 - val_loss: 0.0237 - val_accuracy: 1.0000 Epoch 501/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0443 - accuracy: 0.9825 - val_loss: 0.0158 - val_accuracy: 1.0000 Epoch 502/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0396 - accuracy: 0.9825 - val_loss: 0.0147 - val_accuracy: 1.0000 Epoch 503/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0400 - accuracy: 0.9825 - val_loss: 0.0146 - val_accuracy: 1.0000 Epoch 504/800 114/114 [==============================] - 0s 869us/sample - loss: 0.0414 - accuracy: 0.9825 - val_loss: 0.0139 - val_accuracy: 1.0000 Epoch 505/800 114/114 [==============================] - 0s 876us/sample - loss: 0.0421 - accuracy: 0.9825 - val_loss: 0.0161 - val_accuracy: 1.0000 Epoch 506/800 114/114 [==============================] - 0s 872us/sample - loss: 0.0408 - accuracy: 0.9825 - val_loss: 0.0284 - val_accuracy: 1.0000 Epoch 507/800 114/114 [==============================] - 0s 902us/sample - loss: 0.0424 - accuracy: 0.9825 - val_loss: 0.0163 - val_accuracy: 1.0000 Epoch 508/800 114/114 [==============================] - 0s 858us/sample - loss: 0.0403 - accuracy: 0.9825 - val_loss: 0.0105 - val_accuracy: 1.0000 Epoch 509/800 114/114 [==============================] - 0s 898us/sample - loss: 0.0424 - accuracy: 0.9825 - val_loss: 0.0134 - val_accuracy: 1.0000 Epoch 510/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0407 - accuracy: 0.9825 - val_loss: 0.0153 - val_accuracy: 1.0000 Epoch 511/800 114/114 [==============================] - 0s 885us/sample - loss: 0.0456 - accuracy: 0.9825 - val_loss: 0.0116 - val_accuracy: 1.0000 Epoch 512/800 114/114 [==============================] - 0s 928us/sample - loss: 0.0397 - accuracy: 0.9825 - val_loss: 0.0201 - val_accuracy: 1.0000 Epoch 513/800 114/114 [==============================] - 0s 887us/sample - loss: 0.0426 - accuracy: 0.9825 - val_loss: 0.0230 - val_accuracy: 1.0000 Epoch 514/800 114/114 [==============================] - 0s 863us/sample - loss: 0.0431 - accuracy: 0.9825 - val_loss: 0.0178 - val_accuracy: 1.0000 Epoch 515/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0455 - accuracy: 0.9825 - val_loss: 0.0074 - val_accuracy: 1.0000 Epoch 516/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0432 - accuracy: 0.9912 - val_loss: 0.0129 - val_accuracy: 1.0000 Epoch 517/800 114/114 [==============================] - 0s 922us/sample - loss: 0.0473 - accuracy: 0.9825 - val_loss: 0.0262 - val_accuracy: 1.0000 Epoch 518/800 114/114 [==============================] - 0s 902us/sample - loss: 0.0470 - accuracy: 0.9825 - val_loss: 0.0115 - val_accuracy: 1.0000 Epoch 519/800 114/114 [==============================] - 0s 870us/sample - loss: 0.0405 - accuracy: 0.9825 - val_loss: 0.0141 - val_accuracy: 1.0000 Epoch 520/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0402 - accuracy: 0.9825 - val_loss: 0.0156 - val_accuracy: 1.0000 Epoch 521/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0395 - accuracy: 0.9825 - val_loss: 0.0162 - val_accuracy: 1.0000 Epoch 522/800 114/114 [==============================] - 0s 864us/sample - loss: 0.0395 - accuracy: 0.9825 - val_loss: 0.0151 - val_accuracy: 1.0000 Epoch 523/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0395 - accuracy: 0.9825 - val_loss: 0.0118 - val_accuracy: 1.0000 Epoch 524/800 114/114 [==============================] - 0s 900us/sample - loss: 0.0399 - accuracy: 0.9825 - val_loss: 0.0128 - val_accuracy: 1.0000 Epoch 525/800 114/114 [==============================] - 0s 867us/sample - loss: 0.0458 - accuracy: 0.9825 - val_loss: 0.0245 - val_accuracy: 1.0000 Epoch 526/800 114/114 [==============================] - 0s 896us/sample - loss: 0.0408 - accuracy: 0.9825 - val_loss: 0.0141 - val_accuracy: 1.0000 Epoch 527/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0477 - accuracy: 0.9737 - val_loss: 0.0084 - val_accuracy: 1.0000 Epoch 528/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0407 - accuracy: 0.9825 - val_loss: 0.0159 - val_accuracy: 1.0000 Epoch 529/800 114/114 [==============================] - 0s 891us/sample - loss: 0.0391 - accuracy: 0.9825 - val_loss: 0.0263 - val_accuracy: 1.0000 Epoch 530/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0458 - accuracy: 0.9825 - val_loss: 0.0247 - val_accuracy: 1.0000 Epoch 531/800 114/114 [==============================] - 0s 915us/sample - loss: 0.0388 - accuracy: 0.9825 - val_loss: 0.0103 - val_accuracy: 1.0000 Epoch 532/800 114/114 [==============================] - 0s 886us/sample - loss: 0.0414 - accuracy: 0.9912 - val_loss: 0.0074 - val_accuracy: 1.0000 Epoch 533/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0468 - accuracy: 0.9825 - val_loss: 0.0154 - val_accuracy: 1.0000 Epoch 534/800 114/114 [==============================] - 0s 871us/sample - loss: 0.0412 - accuracy: 0.9825 - val_loss: 0.0141 - val_accuracy: 1.0000 Epoch 535/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0446 - accuracy: 0.9825 - val_loss: 0.0230 - val_accuracy: 1.0000 Epoch 536/800 114/114 [==============================] - 0s 925us/sample - loss: 0.0403 - accuracy: 0.9825 - val_loss: 0.0143 - val_accuracy: 1.0000 Epoch 537/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0374 - accuracy: 0.9825 - val_loss: 0.0090 - val_accuracy: 1.0000 Epoch 538/800 114/114 [==============================] - 0s 908us/sample - loss: 0.0434 - accuracy: 0.9912 - val_loss: 0.0089 - val_accuracy: 1.0000 Epoch 539/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0392 - accuracy: 0.9912 - val_loss: 0.0194 - val_accuracy: 1.0000 Epoch 540/800 114/114 [==============================] - 0s 885us/sample - loss: 0.0481 - accuracy: 0.9825 - val_loss: 0.0313 - val_accuracy: 1.0000 Epoch 541/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0424 - accuracy: 0.9825 - val_loss: 0.0126 - val_accuracy: 1.0000 Epoch 542/800 114/114 [==============================] - 0s 927us/sample - loss: 0.0427 - accuracy: 0.9912 - val_loss: 0.0081 - val_accuracy: 1.0000 Epoch 543/800 114/114 [==============================] - 0s 901us/sample - loss: 0.0414 - accuracy: 0.9912 - val_loss: 0.0184 - val_accuracy: 1.0000 Epoch 544/800 114/114 [==============================] - 0s 869us/sample - loss: 0.0495 - accuracy: 0.9825 - val_loss: 0.0285 - val_accuracy: 1.0000 Epoch 545/800 114/114 [==============================] - 0s 908us/sample - loss: 0.0456 - accuracy: 0.9825 - val_loss: 0.0085 - val_accuracy: 1.0000 Epoch 546/800 114/114 [==============================] - 0s 856us/sample - loss: 0.0451 - accuracy: 0.9912 - val_loss: 0.0087 - val_accuracy: 1.0000 Epoch 547/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0505 - accuracy: 0.9825 - val_loss: 0.0226 - val_accuracy: 1.0000 Epoch 548/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0402 - accuracy: 0.9825 - val_loss: 0.0132 - val_accuracy: 1.0000 Epoch 549/800 114/114 [==============================] - 0s 904us/sample - loss: 0.0456 - accuracy: 0.9825 - val_loss: 0.0102 - val_accuracy: 1.0000 Epoch 550/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0393 - accuracy: 0.9912 - val_loss: 0.0236 - val_accuracy: 1.0000 Epoch 551/800 114/114 [==============================] - 0s 902us/sample - loss: 0.0421 - accuracy: 0.9825 - val_loss: 0.0256 - val_accuracy: 1.0000 Epoch 552/800 114/114 [==============================] - 0s 870us/sample - loss: 0.0405 - accuracy: 0.9825 - val_loss: 0.0132 - val_accuracy: 1.0000 Epoch 553/800 114/114 [==============================] - 0s 893us/sample - loss: 0.0390 - accuracy: 0.9825 - val_loss: 0.0085 - val_accuracy: 1.0000 Epoch 554/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0438 - accuracy: 0.9912 - val_loss: 0.0119 - val_accuracy: 1.0000 Epoch 555/800 114/114 [==============================] - 0s 940us/sample - loss: 0.0410 - accuracy: 0.9825 - val_loss: 0.0200 - val_accuracy: 1.0000 Epoch 556/800 114/114 [==============================] - 0s 869us/sample - loss: 0.0428 - accuracy: 0.9825 - val_loss: 0.0131 - val_accuracy: 1.0000 Epoch 557/800 114/114 [==============================] - 0s 896us/sample - loss: 0.0388 - accuracy: 0.9825 - val_loss: 0.0164 - val_accuracy: 1.0000 Epoch 558/800 114/114 [==============================] - 0s 875us/sample - loss: 0.0424 - accuracy: 0.9825 - val_loss: 0.0134 - val_accuracy: 1.0000 Epoch 559/800 114/114 [==============================] - 0s 867us/sample - loss: 0.0390 - accuracy: 0.9825 - val_loss: 0.0168 - val_accuracy: 1.0000 Epoch 560/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0407 - accuracy: 0.9825 - val_loss: 0.0184 - val_accuracy: 1.0000 Epoch 561/800 114/114 [==============================] - 0s 930us/sample - loss: 0.0407 - accuracy: 0.9825 - val_loss: 0.0229 - val_accuracy: 1.0000 Epoch 562/800 114/114 [==============================] - 0s 863us/sample - loss: 0.0392 - accuracy: 0.9825 - val_loss: 0.0133 - val_accuracy: 1.0000 Epoch 563/800 114/114 [==============================] - 0s 901us/sample - loss: 0.0391 - accuracy: 0.9825 - val_loss: 0.0104 - val_accuracy: 1.0000 Epoch 564/800 114/114 [==============================] - 0s 872us/sample - loss: 0.0409 - accuracy: 0.9825 - val_loss: 0.0124 - val_accuracy: 1.0000 Epoch 565/800 114/114 [==============================] - 0s 929us/sample - loss: 0.0436 - accuracy: 0.9825 - val_loss: 0.0264 - val_accuracy: 1.0000 Epoch 566/800 114/114 [==============================] - 0s 934us/sample - loss: 0.0455 - accuracy: 0.9825 - val_loss: 0.0147 - val_accuracy: 1.0000 Epoch 567/800 114/114 [==============================] - 0s 841us/sample - loss: 0.0386 - accuracy: 0.9825 - val_loss: 0.0089 - val_accuracy: 1.0000 Epoch 568/800 114/114 [==============================] - 0s 908us/sample - loss: 0.0465 - accuracy: 0.9912 - val_loss: 0.0080 - val_accuracy: 1.0000 Epoch 569/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0371 - accuracy: 0.9912 - val_loss: 0.0229 - val_accuracy: 1.0000 Epoch 570/800 114/114 [==============================] - 0s 864us/sample - loss: 0.0412 - accuracy: 0.9825 - val_loss: 0.0290 - val_accuracy: 1.0000 Epoch 571/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0434 - accuracy: 0.9825 - val_loss: 0.0155 - val_accuracy: 1.0000 Epoch 572/800 114/114 [==============================] - 0s 927us/sample - loss: 0.0387 - accuracy: 0.9825 - val_loss: 0.0122 - val_accuracy: 1.0000 Epoch 573/800 114/114 [==============================] - 0s 905us/sample - loss: 0.0405 - accuracy: 0.9825 - val_loss: 0.0136 - val_accuracy: 1.0000 Epoch 574/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0407 - accuracy: 0.9825 - val_loss: 0.0162 - val_accuracy: 1.0000 Epoch 575/800 114/114 [==============================] - 0s 886us/sample - loss: 0.0485 - accuracy: 0.9825 - val_loss: 0.0246 - val_accuracy: 1.0000 Epoch 576/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0391 - accuracy: 0.9825 - val_loss: 0.0090 - val_accuracy: 1.0000 Epoch 577/800 114/114 [==============================] - 0s 866us/sample - loss: 0.0455 - accuracy: 0.9825 - val_loss: 0.0079 - val_accuracy: 1.0000 Epoch 578/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0407 - accuracy: 0.9912 - val_loss: 0.0194 - val_accuracy: 1.0000 Epoch 579/800 114/114 [==============================] - 0s 866us/sample - loss: 0.0395 - accuracy: 0.9825 - val_loss: 0.0203 - val_accuracy: 1.0000 Epoch 580/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0467 - accuracy: 0.9825 - val_loss: 0.0120 - val_accuracy: 1.0000 Epoch 581/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0377 - accuracy: 0.9825 - val_loss: 0.0164 - val_accuracy: 1.0000 Epoch 582/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0391 - accuracy: 0.9825 - val_loss: 0.0189 - val_accuracy: 1.0000 Epoch 583/800 114/114 [==============================] - 0s 869us/sample - loss: 0.0438 - accuracy: 0.9825 - val_loss: 0.0101 - val_accuracy: 1.0000 Epoch 584/800 114/114 [==============================] - 0s 882us/sample - loss: 0.0387 - accuracy: 0.9825 - val_loss: 0.0146 - val_accuracy: 1.0000 Epoch 585/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0415 - accuracy: 0.9825 - val_loss: 0.0236 - val_accuracy: 1.0000 Epoch 586/800 114/114 [==============================] - 0s 882us/sample - loss: 0.0438 - accuracy: 0.9825 - val_loss: 0.0112 - val_accuracy: 1.0000 Epoch 587/800 114/114 [==============================] - 0s 926us/sample - loss: 0.0403 - accuracy: 0.9912 - val_loss: 0.0102 - val_accuracy: 1.0000 Epoch 588/800 114/114 [==============================] - 0s 898us/sample - loss: 0.0466 - accuracy: 0.9825 - val_loss: 0.0201 - val_accuracy: 1.0000 Epoch 589/800 114/114 [==============================] - 0s 857us/sample - loss: 0.0379 - accuracy: 0.9825 - val_loss: 0.0119 - val_accuracy: 1.0000 Epoch 590/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0399 - accuracy: 0.9912 - val_loss: 0.0103 - val_accuracy: 1.0000 Epoch 591/800 114/114 [==============================] - 0s 927us/sample - loss: 0.0390 - accuracy: 0.9825 - val_loss: 0.0192 - val_accuracy: 1.0000 Epoch 592/800 114/114 [==============================] - 0s 896us/sample - loss: 0.0401 - accuracy: 0.9825 - val_loss: 0.0184 - val_accuracy: 1.0000 Epoch 593/800 114/114 [==============================] - 0s 875us/sample - loss: 0.0406 - accuracy: 0.9825 - val_loss: 0.0125 - val_accuracy: 1.0000 Epoch 594/800 114/114 [==============================] - 0s 905us/sample - loss: 0.0371 - accuracy: 0.9825 - val_loss: 0.0093 - val_accuracy: 1.0000 Epoch 595/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0416 - accuracy: 0.9912 - val_loss: 0.0092 - val_accuracy: 1.0000 Epoch 596/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0372 - accuracy: 0.9825 - val_loss: 0.0178 - val_accuracy: 1.0000 Epoch 597/800 114/114 [==============================] - 0s 928us/sample - loss: 0.0388 - accuracy: 0.9825 - val_loss: 0.0203 - val_accuracy: 1.0000 Epoch 598/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0400 - accuracy: 0.9825 - val_loss: 0.0184 - val_accuracy: 1.0000 Epoch 599/800 114/114 [==============================] - 0s 913us/sample - loss: 0.0373 - accuracy: 0.9825 - val_loss: 0.0117 - val_accuracy: 1.0000 Epoch 600/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0442 - accuracy: 0.9825 - val_loss: 0.0078 - val_accuracy: 1.0000 Epoch 601/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0403 - accuracy: 0.9912 - val_loss: 0.0240 - val_accuracy: 1.0000 Epoch 602/800 114/114 [==============================] - 0s 866us/sample - loss: 0.0407 - accuracy: 0.9825 - val_loss: 0.0272 - val_accuracy: 1.0000 Epoch 603/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0398 - accuracy: 0.9825 - val_loss: 0.0154 - val_accuracy: 1.0000 Epoch 604/800 114/114 [==============================] - 0s 957us/sample - loss: 0.0394 - accuracy: 0.9825 - val_loss: 0.0078 - val_accuracy: 1.0000 Epoch 605/800 114/114 [==============================] - 0s 859us/sample - loss: 0.0414 - accuracy: 0.9912 - val_loss: 0.0130 - val_accuracy: 1.0000 Epoch 606/800 114/114 [==============================] - 0s 898us/sample - loss: 0.0379 - accuracy: 0.9825 - val_loss: 0.0189 - val_accuracy: 1.0000 Epoch 607/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0423 - accuracy: 0.9825 - val_loss: 0.0128 - val_accuracy: 1.0000 Epoch 608/800 114/114 [==============================] - 0s 885us/sample - loss: 0.0403 - accuracy: 0.9825 - val_loss: 0.0185 - val_accuracy: 1.0000 Epoch 609/800 114/114 [==============================] - 0s 860us/sample - loss: 0.0418 - accuracy: 0.9825 - val_loss: 0.0112 - val_accuracy: 1.0000 Epoch 610/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0435 - accuracy: 0.9825 - val_loss: 0.0124 - val_accuracy: 1.0000 Epoch 611/800 114/114 [==============================] - 0s 925us/sample - loss: 0.0508 - accuracy: 0.9825 - val_loss: 0.0355 - val_accuracy: 1.0000 Epoch 612/800 114/114 [==============================] - 0s 895us/sample - loss: 0.0478 - accuracy: 0.9825 - val_loss: 0.0106 - val_accuracy: 1.0000 Epoch 613/800 114/114 [==============================] - 0s 888us/sample - loss: 0.0389 - accuracy: 0.9825 - val_loss: 0.0084 - val_accuracy: 1.0000 Epoch 614/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0411 - accuracy: 0.9825 - val_loss: 0.0145 - val_accuracy: 1.0000 Epoch 615/800 114/114 [==============================] - 0s 876us/sample - loss: 0.0374 - accuracy: 0.9825 - val_loss: 0.0165 - val_accuracy: 1.0000 Epoch 616/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0396 - accuracy: 0.9825 - val_loss: 0.0166 - val_accuracy: 1.0000 Epoch 617/800 114/114 [==============================] - 0s 937us/sample - loss: 0.0396 - accuracy: 0.9825 - val_loss: 0.0094 - val_accuracy: 1.0000 Epoch 618/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0423 - accuracy: 0.9825 - val_loss: 0.0140 - val_accuracy: 1.0000 Epoch 619/800 114/114 [==============================] - 0s 875us/sample - loss: 0.0402 - accuracy: 0.9825 - val_loss: 0.0134 - val_accuracy: 1.0000 Epoch 620/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0450 - accuracy: 0.9825 - val_loss: 0.0079 - val_accuracy: 1.0000 Epoch 621/800 114/114 [==============================] - 0s 885us/sample - loss: 0.0392 - accuracy: 0.9825 - val_loss: 0.0177 - val_accuracy: 1.0000 Epoch 622/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0382 - accuracy: 0.9825 - val_loss: 0.0203 - val_accuracy: 1.0000 Epoch 623/800 114/114 [==============================] - 0s 136us/sample - loss: 0.0394 - accuracy: 0.9825 - val_loss: 0.0134 - val_accuracy: 1.0000 Epoch 624/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0393 - accuracy: 0.9825 - val_loss: 0.0118 - val_accuracy: 1.0000 Epoch 625/800 114/114 [==============================] - 0s 914us/sample - loss: 0.0441 - accuracy: 0.9825 - val_loss: 0.0099 - val_accuracy: 1.0000 Epoch 626/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0358 - accuracy: 0.9825 - val_loss: 0.0205 - val_accuracy: 1.0000 Epoch 627/800 114/114 [==============================] - 0s 867us/sample - loss: 0.0439 - accuracy: 0.9825 - val_loss: 0.0262 - val_accuracy: 1.0000 Epoch 628/800 114/114 [==============================] - 0s 908us/sample - loss: 0.0382 - accuracy: 0.9825 - val_loss: 0.0119 - val_accuracy: 1.0000 Epoch 629/800 114/114 [==============================] - 0s 895us/sample - loss: 0.0371 - accuracy: 0.9825 - val_loss: 0.0090 - val_accuracy: 1.0000 Epoch 630/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0476 - accuracy: 0.9825 - val_loss: 0.0081 - val_accuracy: 1.0000 Epoch 631/800 114/114 [==============================] - 0s 903us/sample - loss: 0.0341 - accuracy: 0.9912 - val_loss: 0.0221 - val_accuracy: 1.0000 Epoch 632/800 114/114 [==============================] - 0s 891us/sample - loss: 0.0499 - accuracy: 0.9825 - val_loss: 0.0303 - val_accuracy: 1.0000 Epoch 633/800 114/114 [==============================] - 0s 885us/sample - loss: 0.0360 - accuracy: 0.9825 - val_loss: 0.0088 - val_accuracy: 1.0000 Epoch 634/800 114/114 [==============================] - 0s 867us/sample - loss: 0.0405 - accuracy: 0.9912 - val_loss: 0.0053 - val_accuracy: 1.0000 Epoch 635/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0475 - accuracy: 0.9825 - val_loss: 0.0107 - val_accuracy: 1.0000 Epoch 636/800 114/114 [==============================] - 0s 935us/sample - loss: 0.0440 - accuracy: 0.9825 - val_loss: 0.0357 - val_accuracy: 1.0000 Epoch 637/800 114/114 [==============================] - 0s 886us/sample - loss: 0.0485 - accuracy: 0.9825 - val_loss: 0.0203 - val_accuracy: 1.0000 Epoch 638/800 114/114 [==============================] - 0s 896us/sample - loss: 0.0368 - accuracy: 0.9912 - val_loss: 0.0074 - val_accuracy: 1.0000 Epoch 639/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0435 - accuracy: 0.9912 - val_loss: 0.0080 - val_accuracy: 1.0000 Epoch 640/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0401 - accuracy: 0.9912 - val_loss: 0.0223 - val_accuracy: 1.0000 Epoch 641/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0542 - accuracy: 0.9825 - val_loss: 0.0251 - val_accuracy: 1.0000 Epoch 642/800 114/114 [==============================] - 0s 930us/sample - loss: 0.0404 - accuracy: 0.9912 - val_loss: 0.0065 - val_accuracy: 1.0000 Epoch 643/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0449 - accuracy: 0.9825 - val_loss: 0.0086 - val_accuracy: 1.0000 Epoch 644/800 114/114 [==============================] - 0s 859us/sample - loss: 0.0383 - accuracy: 0.9825 - val_loss: 0.0231 - val_accuracy: 1.0000 Epoch 645/800 114/114 [==============================] - 0s 914us/sample - loss: 0.0402 - accuracy: 0.9825 - val_loss: 0.0214 - val_accuracy: 1.0000 Epoch 646/800 114/114 [==============================] - 0s 869us/sample - loss: 0.0412 - accuracy: 0.9825 - val_loss: 0.0123 - val_accuracy: 1.0000 Epoch 647/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0424 - accuracy: 0.9825 - val_loss: 0.0113 - val_accuracy: 1.0000 Epoch 648/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0479 - accuracy: 0.9825 - val_loss: 0.0277 - val_accuracy: 1.0000 Epoch 649/800 114/114 [==============================] - 0s 915us/sample - loss: 0.0381 - accuracy: 0.9825 - val_loss: 0.0127 - val_accuracy: 1.0000 Epoch 650/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0372 - accuracy: 0.9912 - val_loss: 0.0074 - val_accuracy: 1.0000 Epoch 651/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0444 - accuracy: 0.9825 - val_loss: 0.0142 - val_accuracy: 1.0000 Epoch 652/800 114/114 [==============================] - 0s 889us/sample - loss: 0.0373 - accuracy: 0.9825 - val_loss: 0.0122 - val_accuracy: 1.0000 Epoch 653/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0362 - accuracy: 0.9825 - val_loss: 0.0139 - val_accuracy: 1.0000 Epoch 654/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0394 - accuracy: 0.9825 - val_loss: 0.0124 - val_accuracy: 1.0000 Epoch 655/800 114/114 [==============================] - 0s 934us/sample - loss: 0.0358 - accuracy: 0.9825 - val_loss: 0.0202 - val_accuracy: 1.0000 Epoch 656/800 114/114 [==============================] - 0s 876us/sample - loss: 0.0374 - accuracy: 0.9825 - val_loss: 0.0195 - val_accuracy: 1.0000 Epoch 657/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0393 - accuracy: 0.9825 - val_loss: 0.0172 - val_accuracy: 1.0000 Epoch 658/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0373 - accuracy: 0.9825 - val_loss: 0.0107 - val_accuracy: 1.0000 Epoch 659/800 114/114 [==============================] - 0s 918us/sample - loss: 0.0383 - accuracy: 0.9825 - val_loss: 0.0098 - val_accuracy: 1.0000 Epoch 660/800 114/114 [==============================] - 0s 912us/sample - loss: 0.0401 - accuracy: 0.9825 - val_loss: 0.0109 - val_accuracy: 1.0000 Epoch 661/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0398 - accuracy: 0.9825 - val_loss: 0.0259 - val_accuracy: 1.0000 Epoch 662/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0402 - accuracy: 0.9825 - val_loss: 0.0153 - val_accuracy: 1.0000 Epoch 663/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0388 - accuracy: 0.9825 - val_loss: 0.0071 - val_accuracy: 1.0000 Epoch 664/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0449 - accuracy: 0.9825 - val_loss: 0.0090 - val_accuracy: 1.0000 Epoch 665/800 114/114 [==============================] - 0s 929us/sample - loss: 0.0359 - accuracy: 0.9912 - val_loss: 0.0303 - val_accuracy: 1.0000 Epoch 666/800 114/114 [==============================] - 0s 895us/sample - loss: 0.0426 - accuracy: 0.9825 - val_loss: 0.0295 - val_accuracy: 1.0000 Epoch 667/800 114/114 [==============================] - 0s 898us/sample - loss: 0.0382 - accuracy: 0.9825 - val_loss: 0.0109 - val_accuracy: 1.0000 Epoch 668/800 114/114 [==============================] - 0s 891us/sample - loss: 0.0396 - accuracy: 0.9912 - val_loss: 0.0074 - val_accuracy: 1.0000 Epoch 669/800 114/114 [==============================] - 0s 870us/sample - loss: 0.0390 - accuracy: 0.9912 - val_loss: 0.0134 - val_accuracy: 1.0000 Epoch 670/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0362 - accuracy: 0.9825 - val_loss: 0.0255 - val_accuracy: 1.0000 Epoch 671/800 114/114 [==============================] - 0s 887us/sample - loss: 0.0436 - accuracy: 0.9825 - val_loss: 0.0126 - val_accuracy: 1.0000 Epoch 672/800 114/114 [==============================] - 0s 919us/sample - loss: 0.0365 - accuracy: 0.9825 - val_loss: 0.0133 - val_accuracy: 1.0000 Epoch 673/800 114/114 [==============================] - 0s 919us/sample - loss: 0.0370 - accuracy: 0.9825 - val_loss: 0.0186 - val_accuracy: 1.0000 Epoch 674/800 114/114 [==============================] - 0s 859us/sample - loss: 0.0369 - accuracy: 0.9825 - val_loss: 0.0145 - val_accuracy: 1.0000 Epoch 675/800 114/114 [==============================] - 0s 887us/sample - loss: 0.0381 - accuracy: 0.9825 - val_loss: 0.0152 - val_accuracy: 1.0000 Epoch 676/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0362 - accuracy: 0.9825 - val_loss: 0.0103 - val_accuracy: 1.0000 Epoch 677/800 114/114 [==============================] - 0s 870us/sample - loss: 0.0362 - accuracy: 0.9825 - val_loss: 0.0120 - val_accuracy: 1.0000 Epoch 678/800 114/114 [==============================] - 0s 867us/sample - loss: 0.0367 - accuracy: 0.9825 - val_loss: 0.0119 - val_accuracy: 1.0000 Epoch 679/800 114/114 [==============================] - 0s 934us/sample - loss: 0.0378 - accuracy: 0.9825 - val_loss: 0.0139 - val_accuracy: 1.0000 Epoch 680/800 114/114 [==============================] - 0s 916us/sample - loss: 0.0381 - accuracy: 0.9825 - val_loss: 0.0194 - val_accuracy: 1.0000 Epoch 681/800 114/114 [==============================] - 0s 887us/sample - loss: 0.0373 - accuracy: 0.9825 - val_loss: 0.0123 - val_accuracy: 1.0000 Epoch 682/800 114/114 [==============================] - 0s 866us/sample - loss: 0.0369 - accuracy: 0.9825 - val_loss: 0.0106 - val_accuracy: 1.0000 Epoch 683/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0385 - accuracy: 0.9825 - val_loss: 0.0132 - val_accuracy: 1.0000 Epoch 684/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0377 - accuracy: 0.9825 - val_loss: 0.0122 - val_accuracy: 1.0000 Epoch 685/800 114/114 [==============================] - 0s 932us/sample - loss: 0.0376 - accuracy: 0.9825 - val_loss: 0.0143 - val_accuracy: 1.0000 Epoch 686/800 114/114 [==============================] - 0s 855us/sample - loss: 0.0372 - accuracy: 0.9825 - val_loss: 0.0141 - val_accuracy: 1.0000 Epoch 687/800 114/114 [==============================] - 0s 888us/sample - loss: 0.0369 - accuracy: 0.9825 - val_loss: 0.0135 - val_accuracy: 1.0000 Epoch 688/800 114/114 [==============================] - 0s 903us/sample - loss: 0.0368 - accuracy: 0.9825 - val_loss: 0.0141 - val_accuracy: 1.0000 Epoch 689/800 114/114 [==============================] - 0s 860us/sample - loss: 0.0373 - accuracy: 0.9825 - val_loss: 0.0136 - val_accuracy: 1.0000 Epoch 690/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0357 - accuracy: 0.9825 - val_loss: 0.0099 - val_accuracy: 1.0000 Epoch 691/800 114/114 [==============================] - 0s 881us/sample - loss: 0.0400 - accuracy: 0.9825 - val_loss: 0.0080 - val_accuracy: 1.0000 Epoch 692/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0401 - accuracy: 0.9912 - val_loss: 0.0110 - val_accuracy: 1.0000 Epoch 693/800 114/114 [==============================] - 0s 888us/sample - loss: 0.0576 - accuracy: 0.9825 - val_loss: 0.0426 - val_accuracy: 0.9524 Epoch 694/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0447 - accuracy: 0.9825 - val_loss: 0.0079 - val_accuracy: 1.0000 Epoch 695/800 114/114 [==============================] - 0s 876us/sample - loss: 0.0542 - accuracy: 0.9737 - val_loss: 0.0051 - val_accuracy: 1.0000 Epoch 696/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0468 - accuracy: 0.9825 - val_loss: 0.0230 - val_accuracy: 1.0000 Epoch 697/800 114/114 [==============================] - 0s 954us/sample - loss: 0.0459 - accuracy: 0.9825 - val_loss: 0.0349 - val_accuracy: 1.0000 Epoch 698/800 114/114 [==============================] - 0s 887us/sample - loss: 0.0415 - accuracy: 0.9825 - val_loss: 0.0100 - val_accuracy: 1.0000 Epoch 699/800 114/114 [==============================] - 0s 870us/sample - loss: 0.0378 - accuracy: 0.9912 - val_loss: 0.0088 - val_accuracy: 1.0000 Epoch 700/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0399 - accuracy: 0.9912 - val_loss: 0.0108 - val_accuracy: 1.0000 Epoch 701/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0432 - accuracy: 0.9825 - val_loss: 0.0245 - val_accuracy: 1.0000 Epoch 702/800 114/114 [==============================] - 0s 920us/sample - loss: 0.0402 - accuracy: 0.9825 - val_loss: 0.0138 - val_accuracy: 1.0000 Epoch 703/800 114/114 [==============================] - 0s 888us/sample - loss: 0.0354 - accuracy: 0.9825 - val_loss: 0.0100 - val_accuracy: 1.0000 Epoch 704/800 114/114 [==============================] - 0s 889us/sample - loss: 0.0378 - accuracy: 0.9825 - val_loss: 0.0092 - val_accuracy: 1.0000 Epoch 705/800 114/114 [==============================] - 0s 886us/sample - loss: 0.0359 - accuracy: 0.9825 - val_loss: 0.0144 - val_accuracy: 1.0000 Epoch 706/800 114/114 [==============================] - 0s 887us/sample - loss: 0.0365 - accuracy: 0.9825 - val_loss: 0.0163 - val_accuracy: 1.0000 Epoch 707/800 114/114 [==============================] - 0s 141us/sample - loss: 0.0484 - accuracy: 0.9825 - val_loss: 0.0241 - val_accuracy: 1.0000 Epoch 708/800 114/114 [==============================] - 0s 964us/sample - loss: 0.0329 - accuracy: 0.9825 - val_loss: 0.0097 - val_accuracy: 1.0000 Epoch 709/800 114/114 [==============================] - 0s 886us/sample - loss: 0.0371 - accuracy: 0.9912 - val_loss: 0.0066 - val_accuracy: 1.0000 Epoch 710/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0462 - accuracy: 0.9825 - val_loss: 0.0085 - val_accuracy: 1.0000 Epoch 711/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0395 - accuracy: 0.9825 - val_loss: 0.0284 - val_accuracy: 1.0000 Epoch 712/800 114/114 [==============================] - 0s 883us/sample - loss: 0.0494 - accuracy: 0.9825 - val_loss: 0.0229 - val_accuracy: 1.0000 Epoch 713/800 114/114 [==============================] - 0s 926us/sample - loss: 0.0490 - accuracy: 0.9825 - val_loss: 0.0041 - val_accuracy: 1.0000 Epoch 714/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0487 - accuracy: 0.9825 - val_loss: 0.0058 - val_accuracy: 1.0000 Epoch 715/800 114/114 [==============================] - 0s 915us/sample - loss: 0.0395 - accuracy: 0.9912 - val_loss: 0.0244 - val_accuracy: 1.0000 Epoch 716/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0479 - accuracy: 0.9825 - val_loss: 0.0253 - val_accuracy: 1.0000 Epoch 717/800 114/114 [==============================] - 0s 882us/sample - loss: 0.0470 - accuracy: 0.9825 - val_loss: 0.0059 - val_accuracy: 1.0000 Epoch 718/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0443 - accuracy: 0.9825 - val_loss: 0.0083 - val_accuracy: 1.0000 Epoch 719/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0396 - accuracy: 0.9825 - val_loss: 0.0254 - val_accuracy: 1.0000 Epoch 720/800 114/114 [==============================] - 0s 924us/sample - loss: 0.0405 - accuracy: 0.9825 - val_loss: 0.0222 - val_accuracy: 1.0000 Epoch 721/800 114/114 [==============================] - 0s 852us/sample - loss: 0.0376 - accuracy: 0.9825 - val_loss: 0.0142 - val_accuracy: 1.0000 Epoch 722/800 114/114 [==============================] - 0s 898us/sample - loss: 0.0380 - accuracy: 0.9912 - val_loss: 0.0081 - val_accuracy: 1.0000 Epoch 723/800 114/114 [==============================] - 0s 896us/sample - loss: 0.0376 - accuracy: 0.9912 - val_loss: 0.0159 - val_accuracy: 1.0000 Epoch 724/800 114/114 [==============================] - 0s 850us/sample - loss: 0.0362 - accuracy: 0.9825 - val_loss: 0.0212 - val_accuracy: 1.0000 Epoch 725/800 114/114 [==============================] - 0s 893us/sample - loss: 0.0384 - accuracy: 0.9825 - val_loss: 0.0135 - val_accuracy: 1.0000 Epoch 726/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0400 - accuracy: 0.9825 - val_loss: 0.0070 - val_accuracy: 1.0000 Epoch 727/800 114/114 [==============================] - 0s 912us/sample - loss: 0.0383 - accuracy: 0.9912 - val_loss: 0.0111 - val_accuracy: 1.0000 Epoch 728/800 114/114 [==============================] - 0s 882us/sample - loss: 0.0476 - accuracy: 0.9825 - val_loss: 0.0255 - val_accuracy: 1.0000 Epoch 729/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0443 - accuracy: 0.9825 - val_loss: 0.0078 - val_accuracy: 1.0000 Epoch 730/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0397 - accuracy: 0.9825 - val_loss: 0.0099 - val_accuracy: 1.0000 Epoch 731/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0368 - accuracy: 0.9825 - val_loss: 0.0130 - val_accuracy: 1.0000 Epoch 732/800 114/114 [==============================] - 0s 914us/sample - loss: 0.0365 - accuracy: 0.9825 - val_loss: 0.0128 - val_accuracy: 1.0000 Epoch 733/800 114/114 [==============================] - 0s 900us/sample - loss: 0.0347 - accuracy: 0.9825 - val_loss: 0.0147 - val_accuracy: 1.0000 Epoch 734/800 114/114 [==============================] - 0s 856us/sample - loss: 0.0365 - accuracy: 0.9825 - val_loss: 0.0156 - val_accuracy: 1.0000 Epoch 735/800 114/114 [==============================] - 0s 906us/sample - loss: 0.0368 - accuracy: 0.9825 - val_loss: 0.0150 - val_accuracy: 1.0000 Epoch 736/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0354 - accuracy: 0.9825 - val_loss: 0.0127 - val_accuracy: 1.0000 Epoch 737/800 114/114 [==============================] - 0s 868us/sample - loss: 0.0382 - accuracy: 0.9912 - val_loss: 0.0089 - val_accuracy: 1.0000 Epoch 738/800 114/114 [==============================] - 0s 886us/sample - loss: 0.0371 - accuracy: 0.9912 - val_loss: 0.0139 - val_accuracy: 1.0000 Epoch 739/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0354 - accuracy: 0.9825 - val_loss: 0.0285 - val_accuracy: 1.0000 Epoch 740/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0392 - accuracy: 0.9825 - val_loss: 0.0172 - val_accuracy: 1.0000 Epoch 741/800 114/114 [==============================] - 0s 932us/sample - loss: 0.0387 - accuracy: 0.9825 - val_loss: 0.0085 - val_accuracy: 1.0000 Epoch 742/800 114/114 [==============================] - 0s 856us/sample - loss: 0.0373 - accuracy: 0.9912 - val_loss: 0.0099 - val_accuracy: 1.0000 Epoch 743/800 114/114 [==============================] - 0s 895us/sample - loss: 0.0351 - accuracy: 0.9825 - val_loss: 0.0184 - val_accuracy: 1.0000 Epoch 744/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0379 - accuracy: 0.9825 - val_loss: 0.0153 - val_accuracy: 1.0000 Epoch 745/800 114/114 [==============================] - 0s 949us/sample - loss: 0.0366 - accuracy: 0.9825 - val_loss: 0.0167 - val_accuracy: 1.0000 Epoch 746/800 114/114 [==============================] - 0s 864us/sample - loss: 0.0359 - accuracy: 0.9825 - val_loss: 0.0128 - val_accuracy: 1.0000 Epoch 747/800 114/114 [==============================] - 0s 875us/sample - loss: 0.0427 - accuracy: 0.9825 - val_loss: 0.0068 - val_accuracy: 1.0000 Epoch 748/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0361 - accuracy: 0.9912 - val_loss: 0.0157 - val_accuracy: 1.0000 Epoch 749/800 114/114 [==============================] - 0s 895us/sample - loss: 0.0351 - accuracy: 0.9825 - val_loss: 0.0237 - val_accuracy: 1.0000 Epoch 750/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0395 - accuracy: 0.9825 - val_loss: 0.0132 - val_accuracy: 1.0000 Epoch 751/800 114/114 [==============================] - 0s 919us/sample - loss: 0.0408 - accuracy: 0.9825 - val_loss: 0.0103 - val_accuracy: 1.0000 Epoch 752/800 114/114 [==============================] - 0s 897us/sample - loss: 0.0405 - accuracy: 0.9825 - val_loss: 0.0252 - val_accuracy: 1.0000 Epoch 753/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0372 - accuracy: 0.9825 - val_loss: 0.0150 - val_accuracy: 1.0000 Epoch 754/800 114/114 [==============================] - 0s 884us/sample - loss: 0.0377 - accuracy: 0.9825 - val_loss: 0.0081 - val_accuracy: 1.0000 Epoch 755/800 114/114 [==============================] - 0s 879us/sample - loss: 0.0401 - accuracy: 0.9912 - val_loss: 0.0098 - val_accuracy: 1.0000 Epoch 756/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0380 - accuracy: 0.9825 - val_loss: 0.0272 - val_accuracy: 1.0000 Epoch 757/800 114/114 [==============================] - 0s 932us/sample - loss: 0.0410 - accuracy: 0.9825 - val_loss: 0.0190 - val_accuracy: 1.0000 Epoch 758/800 114/114 [==============================] - 0s 878us/sample - loss: 0.0353 - accuracy: 0.9825 - val_loss: 0.0060 - val_accuracy: 1.0000 Epoch 759/800 114/114 [==============================] - 0s 901us/sample - loss: 0.0406 - accuracy: 0.9912 - val_loss: 0.0067 - val_accuracy: 1.0000 Epoch 760/800 114/114 [==============================] - 0s 862us/sample - loss: 0.0400 - accuracy: 0.9825 - val_loss: 0.0167 - val_accuracy: 1.0000 Epoch 761/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0358 - accuracy: 0.9825 - val_loss: 0.0155 - val_accuracy: 1.0000 Epoch 762/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0340 - accuracy: 0.9825 - val_loss: 0.0143 - val_accuracy: 1.0000 Epoch 763/800 114/114 [==============================] - 0s 926us/sample - loss: 0.0350 - accuracy: 0.9825 - val_loss: 0.0099 - val_accuracy: 1.0000 Epoch 764/800 114/114 [==============================] - 0s 870us/sample - loss: 0.0375 - accuracy: 0.9825 - val_loss: 0.0126 - val_accuracy: 1.0000 Epoch 765/800 114/114 [==============================] - 0s 896us/sample - loss: 0.0356 - accuracy: 0.9825 - val_loss: 0.0111 - val_accuracy: 1.0000 Epoch 766/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0338 - accuracy: 0.9825 - val_loss: 0.0142 - val_accuracy: 1.0000 Epoch 767/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0351 - accuracy: 0.9825 - val_loss: 0.0206 - val_accuracy: 1.0000 Epoch 768/800 114/114 [==============================] - 0s 949us/sample - loss: 0.0386 - accuracy: 0.9825 - val_loss: 0.0115 - val_accuracy: 1.0000 Epoch 769/800 114/114 [==============================] - 0s 843us/sample - loss: 0.0340 - accuracy: 0.9825 - val_loss: 0.0117 - val_accuracy: 1.0000 Epoch 770/800 114/114 [==============================] - 0s 919us/sample - loss: 0.0367 - accuracy: 0.9825 - val_loss: 0.0157 - val_accuracy: 1.0000 Epoch 771/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0349 - accuracy: 0.9825 - val_loss: 0.0132 - val_accuracy: 1.0000 Epoch 772/800 114/114 [==============================] - 0s 869us/sample - loss: 0.0384 - accuracy: 0.9825 - val_loss: 0.0076 - val_accuracy: 1.0000 Epoch 773/800 114/114 [==============================] - 0s 885us/sample - loss: 0.0343 - accuracy: 0.9825 - val_loss: 0.0126 - val_accuracy: 1.0000 Epoch 774/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0337 - accuracy: 0.9825 - val_loss: 0.0194 - val_accuracy: 1.0000 Epoch 775/800 114/114 [==============================] - 0s 940us/sample - loss: 0.0394 - accuracy: 0.9825 - val_loss: 0.0155 - val_accuracy: 1.0000 Epoch 776/800 114/114 [==============================] - 0s 868us/sample - loss: 0.0337 - accuracy: 0.9825 - val_loss: 0.0083 - val_accuracy: 1.0000 Epoch 777/800 114/114 [==============================] - 0s 869us/sample - loss: 0.0444 - accuracy: 0.9912 - val_loss: 0.0058 - val_accuracy: 1.0000 Epoch 778/800 114/114 [==============================] - 0s 880us/sample - loss: 0.0348 - accuracy: 0.9912 - val_loss: 0.0197 - val_accuracy: 1.0000 Epoch 779/800 114/114 [==============================] - 0s 863us/sample - loss: 0.0395 - accuracy: 0.9825 - val_loss: 0.0255 - val_accuracy: 1.0000 Epoch 780/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0362 - accuracy: 0.9825 - val_loss: 0.0089 - val_accuracy: 1.0000 Epoch 781/800 114/114 [==============================] - 0s 919us/sample - loss: 0.0363 - accuracy: 0.9912 - val_loss: 0.0085 - val_accuracy: 1.0000 Epoch 782/800 114/114 [==============================] - 0s 910us/sample - loss: 0.0371 - accuracy: 0.9912 - val_loss: 0.0096 - val_accuracy: 1.0000 Epoch 783/800 114/114 [==============================] - 0s 860us/sample - loss: 0.0328 - accuracy: 0.9912 - val_loss: 0.0169 - val_accuracy: 1.0000 Epoch 784/800 114/114 [==============================] - 0s 892us/sample - loss: 0.0457 - accuracy: 0.9825 - val_loss: 0.0240 - val_accuracy: 1.0000 Epoch 785/800 114/114 [==============================] - 0s 873us/sample - loss: 0.0330 - accuracy: 0.9825 - val_loss: 0.0071 - val_accuracy: 1.0000 Epoch 786/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0398 - accuracy: 0.9912 - val_loss: 0.0053 - val_accuracy: 1.0000 Epoch 787/800 114/114 [==============================] - 0s 909us/sample - loss: 0.0393 - accuracy: 0.9912 - val_loss: 0.0118 - val_accuracy: 1.0000 Epoch 788/800 114/114 [==============================] - 0s 902us/sample - loss: 0.0318 - accuracy: 0.9825 - val_loss: 0.0202 - val_accuracy: 1.0000 Epoch 789/800 114/114 [==============================] - 0s 875us/sample - loss: 0.0499 - accuracy: 0.9825 - val_loss: 0.0276 - val_accuracy: 1.0000 Epoch 790/800 114/114 [==============================] - 0s 874us/sample - loss: 0.0390 - accuracy: 0.9825 - val_loss: 0.0065 - val_accuracy: 1.0000 Epoch 791/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0428 - accuracy: 0.9912 - val_loss: 0.0053 - val_accuracy: 1.0000 Epoch 792/800 114/114 [==============================] - 0s 890us/sample - loss: 0.0398 - accuracy: 0.9912 - val_loss: 0.0170 - val_accuracy: 1.0000 Epoch 793/800 114/114 [==============================] - 0s 895us/sample - loss: 0.0445 - accuracy: 0.9825 - val_loss: 0.0255 - val_accuracy: 1.0000 Epoch 794/800 114/114 [==============================] - 0s 899us/sample - loss: 0.0338 - accuracy: 0.9825 - val_loss: 0.0109 - val_accuracy: 1.0000 Epoch 795/800 114/114 [==============================] - 0s 876us/sample - loss: 0.0335 - accuracy: 0.9912 - val_loss: 0.0067 - val_accuracy: 1.0000 Epoch 796/800 114/114 [==============================] - 0s 856us/sample - loss: 0.0378 - accuracy: 0.9912 - val_loss: 0.0081 - val_accuracy: 1.0000 Epoch 797/800 114/114 [==============================] - 0s 896us/sample - loss: 0.0380 - accuracy: 0.9825 - val_loss: 0.0211 - val_accuracy: 1.0000 Epoch 798/800 114/114 [==============================] - 0s 858us/sample - loss: 0.0379 - accuracy: 0.9825 - val_loss: 0.0190 - val_accuracy: 1.0000 Epoch 799/800 114/114 [==============================] - 0s 877us/sample - loss: 0.0340 - accuracy: 0.9825 - val_loss: 0.0104 - val_accuracy: 1.0000 Epoch 800/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.0354 - accuracy: 0.9825 - val_loss: 0.0062 - val_accuracy: 1.0000
# Run this cell to plot the epoch vs accuracy graph
try:
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
except KeyError:
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('Accuracy vs. epochs')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Training', 'Validation'], loc='lower right')
plt.show()
#Run this cell to plot the epoch vs loss graph
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Loss vs. epochs')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Training', 'Validation'], loc='upper right')
plt.show()
Oh no! We have overfit our dataset. You should now try to now try to mitigate this overfitting.
Reducing overfitting in the model¶
You should now define a new regularised model. The specs for the regularised model are the same as our original model, with the addition of two dropout layers, weight decay, and a batch normalisation layer.
In particular:
- Add a dropout layer after the 3rd Dense layer
- Then there should be two more Dense layers with 128 units before a batch normalisation layer
- Following this, two more Dense layers with 64 units and then another Dropout layer
- Two more Dense layers with 64 units and then the final 3-way softmax layer
- Add weight decay (l2 kernel regularisation) in all Dense layers except the final softmax layer
#### GRADED CELL ####
# Complete the following function.
# Make sure to not change the function name or arguments.
def get_regularised_model(input_shape, dropout_rate, weight_decay):
"""
This function should build a regularised Sequential model according to the above specification.
The dropout_rate argument in the function should be used to set the Dropout rate for all Dropout layers.
L2 kernel regularisation (weight decay) should be added using the weight_decay argument to
set the weight decay coefficient in all Dense layers that use L2 regularisation.
Ensure the weights are initialised by providing the input_shape argument in the first layer, given by the
function argument input_shape.
Your function should return the model.
"""
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(64, kernel_initializer=tf.keras.initializers.he_uniform(),
kernel_regularizer=tf.keras.regularizers.l2(weight_decay),
bias_initializer=tf.keras.initializers.ones(), input_shape=input_shape),
tf.keras.layers.Dense(128, kernel_regularizer=tf.keras.regularizers.l2(weight_decay),activation="relu"),
tf.keras.layers.Dense(128, kernel_regularizer=tf.keras.regularizers.l2(weight_decay),activation="relu"),
tf.keras.layers.Dropout(dropout_rate),
tf.keras.layers.Dense(128, kernel_regularizer=tf.keras.regularizers.l2(weight_decay),activation="relu"),
tf.keras.layers.Dense(128, kernel_regularizer=tf.keras.regularizers.l2(weight_decay),activation="relu"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(64, kernel_regularizer=tf.keras.regularizers.l2(weight_decay),activation="relu"),
tf.keras.layers.Dense(64, kernel_regularizer=tf.keras.regularizers.l2(weight_decay),activation="relu"),
tf.keras.layers.Dropout(dropout_rate),
tf.keras.layers.Dense(64, kernel_regularizer=tf.keras.regularizers.l2(weight_decay),activation="relu"),
tf.keras.layers.Dense(64, kernel_regularizer=tf.keras.regularizers.l2(weight_decay),activation="relu"),
tf.keras.layers.Dense(3, activation="softmax"),
])
return model
Instantiate, compile and train the model¶
# Instantiate the model, using a dropout rate of 0.3 and weight decay coefficient of 0.001
reg_model = get_regularised_model(train_data[0].shape, 0.3, 0.001)
# Compile the model
compile_model(reg_model)
# Train the model
reg_history = train_model(reg_model, train_data, train_targets, epochs=800)
Train on 114 samples, validate on 21 samples Epoch 1/800 114/114 [==============================] - 3s 24ms/sample - loss: 2.0044 - accuracy: 0.3421 - val_loss: 1.9526 - val_accuracy: 0.2381 Epoch 2/800 114/114 [==============================] - 0s 757us/sample - loss: 1.9785 - accuracy: 0.3509 - val_loss: 1.9451 - val_accuracy: 0.0952 Epoch 3/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.9677 - accuracy: 0.3860 - val_loss: 1.9362 - val_accuracy: 0.2857 Epoch 4/800 114/114 [==============================] - 0s 916us/sample - loss: 1.9542 - accuracy: 0.3947 - val_loss: 1.9261 - val_accuracy: 0.3333 Epoch 5/800 114/114 [==============================] - 0s 920us/sample - loss: 1.9026 - accuracy: 0.4474 - val_loss: 1.9142 - val_accuracy: 0.3333 Epoch 6/800 114/114 [==============================] - 0s 887us/sample - loss: 1.9566 - accuracy: 0.4123 - val_loss: 1.9029 - val_accuracy: 0.3333 Epoch 7/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.8806 - accuracy: 0.5000 - val_loss: 1.8933 - val_accuracy: 0.3333 Epoch 8/800 114/114 [==============================] - 0s 905us/sample - loss: 1.9022 - accuracy: 0.4386 - val_loss: 1.8850 - val_accuracy: 0.3333 Epoch 9/800 114/114 [==============================] - 0s 898us/sample - loss: 1.8746 - accuracy: 0.5351 - val_loss: 1.8775 - val_accuracy: 0.3333 Epoch 10/800 114/114 [==============================] - 0s 888us/sample - loss: 1.8736 - accuracy: 0.5000 - val_loss: 1.8717 - val_accuracy: 0.3333 Epoch 11/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.8648 - accuracy: 0.4737 - val_loss: 1.8666 - val_accuracy: 0.3333 Epoch 12/800 114/114 [==============================] - 0s 915us/sample - loss: 1.8637 - accuracy: 0.5175 - val_loss: 1.8584 - val_accuracy: 0.3333 Epoch 13/800 114/114 [==============================] - 0s 892us/sample - loss: 1.8382 - accuracy: 0.5965 - val_loss: 1.8501 - val_accuracy: 0.3333 Epoch 14/800 114/114 [==============================] - 0s 901us/sample - loss: 1.8317 - accuracy: 0.5965 - val_loss: 1.8410 - val_accuracy: 0.3333 Epoch 15/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.7922 - accuracy: 0.5965 - val_loss: 1.8322 - val_accuracy: 0.3333 Epoch 16/800 114/114 [==============================] - 0s 919us/sample - loss: 1.7878 - accuracy: 0.6404 - val_loss: 1.8233 - val_accuracy: 0.3333 Epoch 17/800 114/114 [==============================] - 0s 867us/sample - loss: 1.7944 - accuracy: 0.5439 - val_loss: 1.8135 - val_accuracy: 0.3333 Epoch 18/800 114/114 [==============================] - 0s 901us/sample - loss: 1.7743 - accuracy: 0.5789 - val_loss: 1.8022 - val_accuracy: 0.3333 Epoch 19/800 114/114 [==============================] - 0s 893us/sample - loss: 1.7547 - accuracy: 0.6140 - val_loss: 1.7906 - val_accuracy: 0.3333 Epoch 20/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.7738 - accuracy: 0.6140 - val_loss: 1.7791 - val_accuracy: 0.3810 Epoch 21/800 114/114 [==============================] - 0s 936us/sample - loss: 1.7377 - accuracy: 0.6228 - val_loss: 1.7686 - val_accuracy: 0.3810 Epoch 22/800 114/114 [==============================] - 0s 882us/sample - loss: 1.6808 - accuracy: 0.6316 - val_loss: 1.7580 - val_accuracy: 0.4286 Epoch 23/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.6607 - accuracy: 0.7105 - val_loss: 1.7449 - val_accuracy: 0.4762 Epoch 24/800 114/114 [==============================] - 0s 912us/sample - loss: 1.6960 - accuracy: 0.6667 - val_loss: 1.7286 - val_accuracy: 0.5238 Epoch 25/800 114/114 [==============================] - 0s 893us/sample - loss: 1.6702 - accuracy: 0.6754 - val_loss: 1.7115 - val_accuracy: 0.5238 Epoch 26/800 114/114 [==============================] - 0s 892us/sample - loss: 1.6477 - accuracy: 0.6754 - val_loss: 1.6935 - val_accuracy: 0.5714 Epoch 27/800 114/114 [==============================] - 0s 872us/sample - loss: 1.6417 - accuracy: 0.6667 - val_loss: 1.6762 - val_accuracy: 0.5714 Epoch 28/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.6206 - accuracy: 0.6667 - val_loss: 1.6581 - val_accuracy: 0.5714 Epoch 29/800 114/114 [==============================] - 0s 897us/sample - loss: 1.5926 - accuracy: 0.7018 - val_loss: 1.6426 - val_accuracy: 0.5714 Epoch 30/800 114/114 [==============================] - 0s 892us/sample - loss: 1.5536 - accuracy: 0.7105 - val_loss: 1.6277 - val_accuracy: 0.5714 Epoch 31/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.5528 - accuracy: 0.7368 - val_loss: 1.6118 - val_accuracy: 0.5714 Epoch 32/800 114/114 [==============================] - 0s 940us/sample - loss: 1.5459 - accuracy: 0.6930 - val_loss: 1.5968 - val_accuracy: 0.5714 Epoch 33/800 114/114 [==============================] - 0s 892us/sample - loss: 1.5306 - accuracy: 0.6491 - val_loss: 1.5828 - val_accuracy: 0.5714 Epoch 34/800 114/114 [==============================] - 0s 891us/sample - loss: 1.5282 - accuracy: 0.7018 - val_loss: 1.5687 - val_accuracy: 0.5714 Epoch 35/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.4787 - accuracy: 0.7193 - val_loss: 1.5537 - val_accuracy: 0.5714 Epoch 36/800 114/114 [==============================] - 0s 916us/sample - loss: 1.5182 - accuracy: 0.6930 - val_loss: 1.5363 - val_accuracy: 0.5714 Epoch 37/800 114/114 [==============================] - 0s 884us/sample - loss: 1.4772 - accuracy: 0.7193 - val_loss: 1.5232 - val_accuracy: 0.5714 Epoch 38/800 114/114 [==============================] - 0s 894us/sample - loss: 1.4456 - accuracy: 0.7105 - val_loss: 1.5102 - val_accuracy: 0.5714 Epoch 39/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.4833 - accuracy: 0.6930 - val_loss: 1.4973 - val_accuracy: 0.5714 Epoch 40/800 114/114 [==============================] - 0s 909us/sample - loss: 1.4489 - accuracy: 0.7193 - val_loss: 1.4852 - val_accuracy: 0.5714 Epoch 41/800 114/114 [==============================] - 0s 904us/sample - loss: 1.4386 - accuracy: 0.7105 - val_loss: 1.4713 - val_accuracy: 0.5714 Epoch 42/800 114/114 [==============================] - 0s 887us/sample - loss: 1.3870 - accuracy: 0.7105 - val_loss: 1.4593 - val_accuracy: 0.5714 Epoch 43/800 114/114 [==============================] - 0s 891us/sample - loss: 1.4030 - accuracy: 0.7456 - val_loss: 1.4497 - val_accuracy: 0.5714 Epoch 44/800 114/114 [==============================] - 0s 874us/sample - loss: 1.4194 - accuracy: 0.7018 - val_loss: 1.4420 - val_accuracy: 0.5714 Epoch 45/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.3779 - accuracy: 0.7105 - val_loss: 1.4342 - val_accuracy: 0.5714 Epoch 46/800 114/114 [==============================] - 0s 927us/sample - loss: 1.3746 - accuracy: 0.7456 - val_loss: 1.4250 - val_accuracy: 0.5714 Epoch 47/800 114/114 [==============================] - 0s 895us/sample - loss: 1.3872 - accuracy: 0.6930 - val_loss: 1.4164 - val_accuracy: 0.5714 Epoch 48/800 114/114 [==============================] - 0s 884us/sample - loss: 1.3594 - accuracy: 0.7368 - val_loss: 1.4064 - val_accuracy: 0.6190 Epoch 49/800 114/114 [==============================] - 0s 866us/sample - loss: 1.3681 - accuracy: 0.7544 - val_loss: 1.3991 - val_accuracy: 0.6190 Epoch 50/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.3353 - accuracy: 0.7719 - val_loss: 1.3911 - val_accuracy: 0.6190 Epoch 51/800 114/114 [==============================] - 0s 879us/sample - loss: 1.3175 - accuracy: 0.7544 - val_loss: 1.3829 - val_accuracy: 0.6190 Epoch 52/800 114/114 [==============================] - 0s 905us/sample - loss: 1.3280 - accuracy: 0.7368 - val_loss: 1.3741 - val_accuracy: 0.6667 Epoch 53/800 114/114 [==============================] - 0s 884us/sample - loss: 1.3807 - accuracy: 0.6930 - val_loss: 1.3686 - val_accuracy: 0.6667 Epoch 54/800 114/114 [==============================] - 0s 899us/sample - loss: 1.3217 - accuracy: 0.7544 - val_loss: 1.3623 - val_accuracy: 0.6667 Epoch 55/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.3538 - accuracy: 0.7632 - val_loss: 1.3571 - val_accuracy: 0.6667 Epoch 56/800 114/114 [==============================] - 0s 907us/sample - loss: 1.2694 - accuracy: 0.7807 - val_loss: 1.3519 - val_accuracy: 0.6667 Epoch 57/800 114/114 [==============================] - 0s 893us/sample - loss: 1.3122 - accuracy: 0.7632 - val_loss: 1.3456 - val_accuracy: 0.6667 Epoch 58/800 114/114 [==============================] - 0s 899us/sample - loss: 1.3064 - accuracy: 0.7544 - val_loss: 1.3378 - val_accuracy: 0.6667 Epoch 59/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.3117 - accuracy: 0.7807 - val_loss: 1.3281 - val_accuracy: 0.7143 Epoch 60/800 114/114 [==============================] - 0s 943us/sample - loss: 1.2765 - accuracy: 0.7895 - val_loss: 1.3165 - val_accuracy: 0.7143 Epoch 61/800 114/114 [==============================] - 0s 892us/sample - loss: 1.2945 - accuracy: 0.7368 - val_loss: 1.3066 - val_accuracy: 0.7143 Epoch 62/800 114/114 [==============================] - 0s 889us/sample - loss: 1.2645 - accuracy: 0.7982 - val_loss: 1.2992 - val_accuracy: 0.7143 Epoch 63/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.2642 - accuracy: 0.7544 - val_loss: 1.2933 - val_accuracy: 0.7143 Epoch 64/800 114/114 [==============================] - 0s 918us/sample - loss: 1.2676 - accuracy: 0.7368 - val_loss: 1.2899 - val_accuracy: 0.8095 Epoch 65/800 114/114 [==============================] - 0s 909us/sample - loss: 1.2683 - accuracy: 0.7368 - val_loss: 1.2864 - val_accuracy: 0.7619 Epoch 66/800 114/114 [==============================] - 0s 899us/sample - loss: 1.3145 - accuracy: 0.7456 - val_loss: 1.2838 - val_accuracy: 0.8571 Epoch 67/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.2829 - accuracy: 0.7456 - val_loss: 1.2827 - val_accuracy: 0.8571 Epoch 68/800 114/114 [==============================] - 0s 926us/sample - loss: 1.2339 - accuracy: 0.7982 - val_loss: 1.2791 - val_accuracy: 0.8571 Epoch 69/800 114/114 [==============================] - 0s 879us/sample - loss: 1.2394 - accuracy: 0.7982 - val_loss: 1.2734 - val_accuracy: 0.9048 Epoch 70/800 114/114 [==============================] - 0s 897us/sample - loss: 1.2084 - accuracy: 0.8246 - val_loss: 1.2660 - val_accuracy: 0.9048 Epoch 71/800 114/114 [==============================] - 0s 890us/sample - loss: 1.2423 - accuracy: 0.8333 - val_loss: 1.2533 - val_accuracy: 0.9048 Epoch 72/800 114/114 [==============================] - 0s 875us/sample - loss: 1.2438 - accuracy: 0.7807 - val_loss: 1.2415 - val_accuracy: 0.9524 Epoch 73/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.2023 - accuracy: 0.8158 - val_loss: 1.2291 - val_accuracy: 0.9524 Epoch 74/800 114/114 [==============================] - 0s 912us/sample - loss: 1.2564 - accuracy: 0.7807 - val_loss: 1.2194 - val_accuracy: 0.9524 Epoch 75/800 114/114 [==============================] - 0s 896us/sample - loss: 1.2258 - accuracy: 0.7807 - val_loss: 1.2136 - val_accuracy: 0.9524 Epoch 76/800 114/114 [==============================] - 0s 883us/sample - loss: 1.2169 - accuracy: 0.7982 - val_loss: 1.2043 - val_accuracy: 0.9524 Epoch 77/800 114/114 [==============================] - 0s 874us/sample - loss: 1.1754 - accuracy: 0.8158 - val_loss: 1.1950 - val_accuracy: 0.9524 Epoch 78/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.1976 - accuracy: 0.7807 - val_loss: 1.1852 - val_accuracy: 0.9524 Epoch 79/800 114/114 [==============================] - 0s 912us/sample - loss: 1.1570 - accuracy: 0.8509 - val_loss: 1.1746 - val_accuracy: 0.9524 Epoch 80/800 114/114 [==============================] - 0s 900us/sample - loss: 1.1492 - accuracy: 0.8772 - val_loss: 1.1601 - val_accuracy: 1.0000 Epoch 81/800 114/114 [==============================] - 0s 889us/sample - loss: 1.1754 - accuracy: 0.8246 - val_loss: 1.1454 - val_accuracy: 1.0000 Epoch 82/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.1573 - accuracy: 0.8772 - val_loss: 1.1352 - val_accuracy: 1.0000 Epoch 83/800 114/114 [==============================] - 0s 874us/sample - loss: 1.1358 - accuracy: 0.8333 - val_loss: 1.1262 - val_accuracy: 1.0000 Epoch 84/800 114/114 [==============================] - 0s 950us/sample - loss: 1.0902 - accuracy: 0.9035 - val_loss: 1.1176 - val_accuracy: 1.0000 Epoch 85/800 114/114 [==============================] - 0s 890us/sample - loss: 1.1813 - accuracy: 0.8421 - val_loss: 1.1118 - val_accuracy: 1.0000 Epoch 86/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.1620 - accuracy: 0.8333 - val_loss: 1.1081 - val_accuracy: 1.0000 Epoch 87/800 114/114 [==============================] - 0s 944us/sample - loss: 1.1145 - accuracy: 0.9035 - val_loss: 1.1062 - val_accuracy: 1.0000 Epoch 88/800 114/114 [==============================] - 0s 868us/sample - loss: 1.1255 - accuracy: 0.8772 - val_loss: 1.1005 - val_accuracy: 1.0000 Epoch 89/800 114/114 [==============================] - 0s 862us/sample - loss: 1.1001 - accuracy: 0.8772 - val_loss: 1.0912 - val_accuracy: 1.0000 Epoch 90/800 114/114 [==============================] - 0s 896us/sample - loss: 1.1206 - accuracy: 0.8596 - val_loss: 1.0801 - val_accuracy: 1.0000 Epoch 91/800 114/114 [==============================] - 0s 906us/sample - loss: 1.1355 - accuracy: 0.8509 - val_loss: 1.0686 - val_accuracy: 1.0000 Epoch 92/800 114/114 [==============================] - 0s 887us/sample - loss: 1.1023 - accuracy: 0.8947 - val_loss: 1.0600 - val_accuracy: 1.0000 Epoch 93/800 114/114 [==============================] - 0s 880us/sample - loss: 1.0930 - accuracy: 0.8772 - val_loss: 1.0532 - val_accuracy: 1.0000 Epoch 94/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.0813 - accuracy: 0.8684 - val_loss: 1.0542 - val_accuracy: 1.0000 Epoch 95/800 114/114 [==============================] - 0s 911us/sample - loss: 1.0613 - accuracy: 0.9035 - val_loss: 1.0551 - val_accuracy: 0.9524 Epoch 96/800 114/114 [==============================] - 0s 899us/sample - loss: 1.0851 - accuracy: 0.8684 - val_loss: 1.0507 - val_accuracy: 0.9524 Epoch 97/800 114/114 [==============================] - 0s 890us/sample - loss: 1.0898 - accuracy: 0.8860 - val_loss: 1.0402 - val_accuracy: 0.9524 Epoch 98/800 114/114 [==============================] - 0s 875us/sample - loss: 1.0717 - accuracy: 0.9035 - val_loss: 1.0272 - val_accuracy: 0.9524 Epoch 99/800 114/114 [==============================] - 0s 2ms/sample - loss: 1.0386 - accuracy: 0.9211 - val_loss: 1.0141 - val_accuracy: 1.0000 Epoch 100/800 114/114 [==============================] - 0s 932us/sample - loss: 1.0374 - accuracy: 0.9386 - val_loss: 1.0044 - val_accuracy: 1.0000 Epoch 101/800 114/114 [==============================] - 0s 887us/sample - loss: 1.0730 - accuracy: 0.8860 - val_loss: 0.9977 - val_accuracy: 1.0000 Epoch 102/800 114/114 [==============================] - 0s 909us/sample - loss: 1.0660 - accuracy: 0.8772 - val_loss: 1.0022 - val_accuracy: 0.9524 Epoch 103/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.9996 - accuracy: 0.9298 - val_loss: 1.0055 - val_accuracy: 0.9524 Epoch 104/800 114/114 [==============================] - 0s 934us/sample - loss: 1.0212 - accuracy: 0.9298 - val_loss: 0.9961 - val_accuracy: 0.9524 Epoch 105/800 114/114 [==============================] - 0s 881us/sample - loss: 1.0253 - accuracy: 0.8947 - val_loss: 0.9828 - val_accuracy: 0.9524 Epoch 106/800 114/114 [==============================] - 0s 905us/sample - loss: 1.0393 - accuracy: 0.8860 - val_loss: 0.9829 - val_accuracy: 0.9524 Epoch 107/800 114/114 [==============================] - 0s 884us/sample - loss: 0.9975 - accuracy: 0.9386 - val_loss: 0.9770 - val_accuracy: 0.9524 Epoch 108/800 114/114 [==============================] - 0s 923us/sample - loss: 1.0208 - accuracy: 0.9386 - val_loss: 0.9678 - val_accuracy: 0.9524 Epoch 109/800 114/114 [==============================] - 0s 885us/sample - loss: 0.9646 - accuracy: 0.9386 - val_loss: 0.9564 - val_accuracy: 0.9524 Epoch 110/800 114/114 [==============================] - 0s 913us/sample - loss: 0.9645 - accuracy: 0.9298 - val_loss: 0.9439 - val_accuracy: 0.9524 Epoch 111/800 114/114 [==============================] - 0s 891us/sample - loss: 0.9984 - accuracy: 0.9211 - val_loss: 0.9269 - val_accuracy: 0.9524 Epoch 112/800 114/114 [==============================] - 0s 957us/sample - loss: 0.9307 - accuracy: 0.9561 - val_loss: 0.9179 - val_accuracy: 0.9524 Epoch 113/800 114/114 [==============================] - 0s 890us/sample - loss: 0.9395 - accuracy: 0.9474 - val_loss: 0.9124 - val_accuracy: 0.9524 Epoch 114/800 114/114 [==============================] - 0s 880us/sample - loss: 0.9484 - accuracy: 0.9649 - val_loss: 0.9248 - val_accuracy: 0.9524 Epoch 115/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.9635 - accuracy: 0.9298 - val_loss: 0.9357 - val_accuracy: 0.9524 Epoch 116/800 114/114 [==============================] - 0s 909us/sample - loss: 0.9886 - accuracy: 0.9123 - val_loss: 0.9209 - val_accuracy: 0.9524 Epoch 117/800 114/114 [==============================] - 0s 922us/sample - loss: 0.9725 - accuracy: 0.9035 - val_loss: 0.9110 - val_accuracy: 0.9524 Epoch 118/800 114/114 [==============================] - 0s 868us/sample - loss: 0.9324 - accuracy: 0.9386 - val_loss: 0.8968 - val_accuracy: 0.9524 Epoch 119/800 114/114 [==============================] - 0s 893us/sample - loss: 0.9648 - accuracy: 0.9298 - val_loss: 0.8833 - val_accuracy: 0.9524 Epoch 120/800 114/114 [==============================] - 0s 886us/sample - loss: 0.9132 - accuracy: 0.9649 - val_loss: 0.8791 - val_accuracy: 0.9524 Epoch 121/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.9447 - accuracy: 0.9386 - val_loss: 0.8840 - val_accuracy: 0.9524 Epoch 122/800 114/114 [==============================] - 0s 911us/sample - loss: 0.8934 - accuracy: 0.9561 - val_loss: 0.8978 - val_accuracy: 0.9524 Epoch 123/800 114/114 [==============================] - 0s 898us/sample - loss: 0.9210 - accuracy: 0.9474 - val_loss: 0.8878 - val_accuracy: 0.9524 Epoch 124/800 114/114 [==============================] - 0s 897us/sample - loss: 0.9263 - accuracy: 0.9474 - val_loss: 0.8705 - val_accuracy: 0.9524 Epoch 125/800 114/114 [==============================] - 0s 873us/sample - loss: 0.9486 - accuracy: 0.9035 - val_loss: 0.8594 - val_accuracy: 0.9524 Epoch 126/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.9486 - accuracy: 0.9211 - val_loss: 0.8456 - val_accuracy: 0.9524 Epoch 127/800 114/114 [==============================] - 0s 918us/sample - loss: 0.9080 - accuracy: 0.9298 - val_loss: 0.8459 - val_accuracy: 0.9524 Epoch 128/800 114/114 [==============================] - 0s 900us/sample - loss: 0.8369 - accuracy: 0.9825 - val_loss: 0.8376 - val_accuracy: 0.9524 Epoch 129/800 114/114 [==============================] - 0s 885us/sample - loss: 0.8624 - accuracy: 0.9649 - val_loss: 0.8338 - val_accuracy: 0.9524 Epoch 130/800 114/114 [==============================] - 0s 891us/sample - loss: 0.8649 - accuracy: 0.9474 - val_loss: 0.8237 - val_accuracy: 0.9524 Epoch 131/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.9110 - accuracy: 0.9386 - val_loss: 0.8215 - val_accuracy: 0.9524 Epoch 132/800 114/114 [==============================] - 0s 909us/sample - loss: 0.8777 - accuracy: 0.9649 - val_loss: 0.8203 - val_accuracy: 0.9524 Epoch 133/800 114/114 [==============================] - 0s 884us/sample - loss: 0.8694 - accuracy: 0.9474 - val_loss: 0.8457 - val_accuracy: 0.9524 Epoch 134/800 114/114 [==============================] - 0s 896us/sample - loss: 0.8891 - accuracy: 0.9561 - val_loss: 0.8610 - val_accuracy: 0.9524 Epoch 135/800 114/114 [==============================] - 0s 892us/sample - loss: 0.9172 - accuracy: 0.9298 - val_loss: 0.8591 - val_accuracy: 0.9524 Epoch 136/800 114/114 [==============================] - 0s 875us/sample - loss: 0.9243 - accuracy: 0.9386 - val_loss: 0.8202 - val_accuracy: 0.9524 Epoch 137/800 114/114 [==============================] - 0s 913us/sample - loss: 0.8499 - accuracy: 0.9649 - val_loss: 0.7969 - val_accuracy: 1.0000 Epoch 138/800 114/114 [==============================] - 0s 900us/sample - loss: 0.8515 - accuracy: 0.9649 - val_loss: 0.7944 - val_accuracy: 1.0000 Epoch 139/800 114/114 [==============================] - 0s 897us/sample - loss: 0.8599 - accuracy: 0.9474 - val_loss: 0.7965 - val_accuracy: 0.9524 Epoch 140/800 114/114 [==============================] - 0s 890us/sample - loss: 0.8972 - accuracy: 0.9298 - val_loss: 0.7953 - val_accuracy: 0.9524 Epoch 141/800 114/114 [==============================] - 0s 871us/sample - loss: 0.8333 - accuracy: 0.9737 - val_loss: 0.7822 - val_accuracy: 1.0000 Epoch 142/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.8268 - accuracy: 0.9825 - val_loss: 0.7810 - val_accuracy: 1.0000 Epoch 143/800 114/114 [==============================] - 0s 907us/sample - loss: 0.9012 - accuracy: 0.9298 - val_loss: 0.7853 - val_accuracy: 1.0000 Epoch 144/800 114/114 [==============================] - 0s 890us/sample - loss: 0.8497 - accuracy: 0.9737 - val_loss: 0.7942 - val_accuracy: 0.9524 Epoch 145/800 114/114 [==============================] - 0s 872us/sample - loss: 0.8128 - accuracy: 0.9737 - val_loss: 0.8103 - val_accuracy: 0.9524 Epoch 146/800 114/114 [==============================] - 0s 890us/sample - loss: 0.8406 - accuracy: 0.9737 - val_loss: 0.8380 - val_accuracy: 0.9524 Epoch 147/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.8248 - accuracy: 0.9737 - val_loss: 0.8422 - val_accuracy: 0.9524 Epoch 148/800 114/114 [==============================] - 0s 913us/sample - loss: 0.8454 - accuracy: 0.9561 - val_loss: 0.8248 - val_accuracy: 0.9524 Epoch 149/800 114/114 [==============================] - 0s 894us/sample - loss: 0.8021 - accuracy: 0.9825 - val_loss: 0.8050 - val_accuracy: 0.9524 Epoch 150/800 114/114 [==============================] - 0s 873us/sample - loss: 0.8607 - accuracy: 0.9561 - val_loss: 0.7860 - val_accuracy: 0.9524 Epoch 151/800 114/114 [==============================] - 0s 897us/sample - loss: 0.8737 - accuracy: 0.9474 - val_loss: 0.7752 - val_accuracy: 1.0000 Epoch 152/800 114/114 [==============================] - 0s 875us/sample - loss: 0.8600 - accuracy: 0.9649 - val_loss: 0.7790 - val_accuracy: 0.9524 Epoch 153/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.8126 - accuracy: 0.9825 - val_loss: 0.7896 - val_accuracy: 0.9524 Epoch 154/800 114/114 [==============================] - 0s 904us/sample - loss: 0.8260 - accuracy: 0.9737 - val_loss: 0.8054 - val_accuracy: 0.9524 Epoch 155/800 114/114 [==============================] - 0s 899us/sample - loss: 0.8355 - accuracy: 0.9561 - val_loss: 0.8296 - val_accuracy: 0.9524 Epoch 156/800 114/114 [==============================] - 0s 884us/sample - loss: 0.8606 - accuracy: 0.9474 - val_loss: 0.8484 - val_accuracy: 0.9524 Epoch 157/800 114/114 [==============================] - 0s 883us/sample - loss: 0.8273 - accuracy: 0.9649 - val_loss: 0.8410 - val_accuracy: 0.9524 Epoch 158/800 114/114 [==============================] - 0s 896us/sample - loss: 0.8989 - accuracy: 0.9386 - val_loss: 0.8255 - val_accuracy: 0.9524 Epoch 159/800 114/114 [==============================] - 0s 870us/sample - loss: 0.8208 - accuracy: 0.9737 - val_loss: 0.7968 - val_accuracy: 0.9524 Epoch 160/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.8418 - accuracy: 0.9474 - val_loss: 0.7778 - val_accuracy: 0.9524 Epoch 161/800 114/114 [==============================] - 0s 928us/sample - loss: 0.8713 - accuracy: 0.9561 - val_loss: 0.7887 - val_accuracy: 0.9524 Epoch 162/800 114/114 [==============================] - 0s 870us/sample - loss: 0.8387 - accuracy: 0.9649 - val_loss: 0.7917 - val_accuracy: 0.9524 Epoch 163/800 114/114 [==============================] - 0s 892us/sample - loss: 0.8505 - accuracy: 0.9386 - val_loss: 0.8015 - val_accuracy: 0.9524 Epoch 164/800 114/114 [==============================] - 0s 893us/sample - loss: 0.8161 - accuracy: 0.9737 - val_loss: 0.8181 - val_accuracy: 0.9524 Epoch 165/800 114/114 [==============================] - 0s 876us/sample - loss: 0.8163 - accuracy: 0.9649 - val_loss: 0.8135 - val_accuracy: 0.9524 Epoch 166/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.8194 - accuracy: 0.9649 - val_loss: 0.7957 - val_accuracy: 0.9524 Epoch 167/800 114/114 [==============================] - 0s 936us/sample - loss: 0.8348 - accuracy: 0.9561 - val_loss: 0.7805 - val_accuracy: 0.9524 Epoch 168/800 114/114 [==============================] - 0s 880us/sample - loss: 0.8169 - accuracy: 0.9912 - val_loss: 0.7672 - val_accuracy: 0.9524 Epoch 169/800 114/114 [==============================] - 0s 886us/sample - loss: 0.8128 - accuracy: 0.9737 - val_loss: 0.7632 - val_accuracy: 0.9524 Epoch 170/800 114/114 [==============================] - 0s 895us/sample - loss: 0.8027 - accuracy: 0.9737 - val_loss: 0.7624 - val_accuracy: 0.9524 Epoch 171/800 114/114 [==============================] - 0s 893us/sample - loss: 0.7920 - accuracy: 0.9825 - val_loss: 0.7761 - val_accuracy: 0.9524 Epoch 172/800 114/114 [==============================] - 0s 936us/sample - loss: 0.8153 - accuracy: 0.9561 - val_loss: 0.8136 - val_accuracy: 0.9524 Epoch 173/800 114/114 [==============================] - 0s 873us/sample - loss: 0.8448 - accuracy: 0.9386 - val_loss: 0.8500 - val_accuracy: 0.9524 Epoch 174/800 114/114 [==============================] - 0s 893us/sample - loss: 0.8077 - accuracy: 0.9825 - val_loss: 0.8510 - val_accuracy: 0.9524 Epoch 175/800 114/114 [==============================] - 0s 891us/sample - loss: 0.8007 - accuracy: 0.9649 - val_loss: 0.8233 - val_accuracy: 0.9524 Epoch 176/800 114/114 [==============================] - 0s 892us/sample - loss: 0.7996 - accuracy: 0.9649 - val_loss: 0.7763 - val_accuracy: 0.9524 Epoch 177/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.8025 - accuracy: 0.9737 - val_loss: 0.7587 - val_accuracy: 0.9524 Epoch 178/800 114/114 [==============================] - 0s 906us/sample - loss: 0.8209 - accuracy: 0.9649 - val_loss: 0.7514 - val_accuracy: 1.0000 Epoch 179/800 114/114 [==============================] - 0s 886us/sample - loss: 0.7993 - accuracy: 0.9649 - val_loss: 0.7646 - val_accuracy: 0.9524 Epoch 180/800 114/114 [==============================] - 0s 897us/sample - loss: 0.8132 - accuracy: 0.9649 - val_loss: 0.7948 - val_accuracy: 0.9524 Epoch 181/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.8580 - accuracy: 0.9298 - val_loss: 0.8454 - val_accuracy: 0.9524 Epoch 182/800 114/114 [==============================] - 0s 939us/sample - loss: 0.7530 - accuracy: 0.9912 - val_loss: 0.8464 - val_accuracy: 0.9524 Epoch 183/800 114/114 [==============================] - 0s 896us/sample - loss: 0.8314 - accuracy: 0.9649 - val_loss: 0.8376 - val_accuracy: 0.9524 Epoch 184/800 114/114 [==============================] - 0s 894us/sample - loss: 0.7940 - accuracy: 0.9825 - val_loss: 0.8100 - val_accuracy: 0.9524 Epoch 185/800 114/114 [==============================] - 0s 880us/sample - loss: 0.7877 - accuracy: 0.9737 - val_loss: 0.8023 - val_accuracy: 0.9524 Epoch 186/800 114/114 [==============================] - 0s 953us/sample - loss: 0.7788 - accuracy: 0.9649 - val_loss: 0.7757 - val_accuracy: 0.9524 Epoch 187/800 114/114 [==============================] - 0s 860us/sample - loss: 0.8032 - accuracy: 0.9737 - val_loss: 0.7541 - val_accuracy: 0.9524 Epoch 188/800 114/114 [==============================] - 0s 892us/sample - loss: 0.7861 - accuracy: 0.9649 - val_loss: 0.7547 - val_accuracy: 0.9524 Epoch 189/800 114/114 [==============================] - 0s 905us/sample - loss: 0.7769 - accuracy: 0.9825 - val_loss: 0.7619 - val_accuracy: 0.9524 Epoch 190/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7888 - accuracy: 0.9649 - val_loss: 0.7761 - val_accuracy: 0.9524 Epoch 191/800 114/114 [==============================] - 0s 882us/sample - loss: 0.7488 - accuracy: 0.9825 - val_loss: 0.7832 - val_accuracy: 0.9524 Epoch 192/800 114/114 [==============================] - 0s 905us/sample - loss: 0.8277 - accuracy: 0.9561 - val_loss: 0.7966 - val_accuracy: 0.9524 Epoch 193/800 114/114 [==============================] - 0s 887us/sample - loss: 0.7807 - accuracy: 0.9649 - val_loss: 0.8142 - val_accuracy: 0.9524 Epoch 194/800 114/114 [==============================] - 0s 873us/sample - loss: 0.7945 - accuracy: 0.9649 - val_loss: 0.8132 - val_accuracy: 0.9524 Epoch 195/800 114/114 [==============================] - 0s 889us/sample - loss: 0.8019 - accuracy: 0.9649 - val_loss: 0.8079 - val_accuracy: 0.9524 Epoch 196/800 114/114 [==============================] - 0s 876us/sample - loss: 0.8167 - accuracy: 0.9561 - val_loss: 0.7786 - val_accuracy: 0.9524 Epoch 197/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7906 - accuracy: 0.9737 - val_loss: 0.7505 - val_accuracy: 0.9524 Epoch 198/800 114/114 [==============================] - 0s 933us/sample - loss: 0.8101 - accuracy: 0.9649 - val_loss: 0.7394 - val_accuracy: 0.9524 Epoch 199/800 114/114 [==============================] - 0s 870us/sample - loss: 0.7964 - accuracy: 0.9649 - val_loss: 0.7460 - val_accuracy: 0.9524 Epoch 200/800 114/114 [==============================] - 0s 899us/sample - loss: 0.7988 - accuracy: 0.9737 - val_loss: 0.7595 - val_accuracy: 0.9524 Epoch 201/800 114/114 [==============================] - 0s 887us/sample - loss: 0.8002 - accuracy: 0.9649 - val_loss: 0.7745 - val_accuracy: 0.9524 Epoch 202/800 114/114 [==============================] - 0s 877us/sample - loss: 0.7790 - accuracy: 0.9737 - val_loss: 0.7942 - val_accuracy: 0.9524 Epoch 203/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7893 - accuracy: 0.9737 - val_loss: 0.7950 - val_accuracy: 0.9524 Epoch 204/800 114/114 [==============================] - 0s 916us/sample - loss: 0.7683 - accuracy: 0.9825 - val_loss: 0.7770 - val_accuracy: 0.9524 Epoch 205/800 114/114 [==============================] - 0s 893us/sample - loss: 0.7683 - accuracy: 0.9737 - val_loss: 0.7766 - val_accuracy: 0.9524 Epoch 206/800 114/114 [==============================] - 0s 888us/sample - loss: 0.7688 - accuracy: 0.9649 - val_loss: 0.7574 - val_accuracy: 0.9524 Epoch 207/800 114/114 [==============================] - 0s 873us/sample - loss: 0.7432 - accuracy: 0.9737 - val_loss: 0.7571 - val_accuracy: 0.9524 Epoch 208/800 114/114 [==============================] - 0s 871us/sample - loss: 0.7809 - accuracy: 0.9649 - val_loss: 0.7602 - val_accuracy: 0.9524 Epoch 209/800 114/114 [==============================] - 0s 911us/sample - loss: 0.8181 - accuracy: 0.9649 - val_loss: 0.7890 - val_accuracy: 0.9524 Epoch 210/800 114/114 [==============================] - 0s 900us/sample - loss: 0.7437 - accuracy: 0.9737 - val_loss: 0.8011 - val_accuracy: 0.9524 Epoch 211/800 114/114 [==============================] - 0s 892us/sample - loss: 0.7674 - accuracy: 0.9825 - val_loss: 0.7846 - val_accuracy: 0.9524 Epoch 212/800 114/114 [==============================] - 0s 890us/sample - loss: 0.7529 - accuracy: 0.9737 - val_loss: 0.7464 - val_accuracy: 0.9524 Epoch 213/800 114/114 [==============================] - 0s 888us/sample - loss: 0.7709 - accuracy: 0.9737 - val_loss: 0.7263 - val_accuracy: 1.0000 Epoch 214/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7863 - accuracy: 0.9474 - val_loss: 0.7122 - val_accuracy: 1.0000 Epoch 215/800 114/114 [==============================] - 0s 939us/sample - loss: 0.7670 - accuracy: 0.9825 - val_loss: 0.7083 - val_accuracy: 1.0000 Epoch 216/800 114/114 [==============================] - 0s 885us/sample - loss: 0.7989 - accuracy: 0.9649 - val_loss: 0.7121 - val_accuracy: 1.0000 Epoch 217/800 114/114 [==============================] - 0s 877us/sample - loss: 0.7657 - accuracy: 0.9825 - val_loss: 0.7257 - val_accuracy: 1.0000 Epoch 218/800 114/114 [==============================] - 0s 887us/sample - loss: 0.8094 - accuracy: 0.9649 - val_loss: 0.7383 - val_accuracy: 0.9524 Epoch 219/800 114/114 [==============================] - 0s 890us/sample - loss: 0.7680 - accuracy: 0.9649 - val_loss: 0.7511 - val_accuracy: 0.9524 Epoch 220/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7473 - accuracy: 0.9825 - val_loss: 0.7670 - val_accuracy: 0.9524 Epoch 221/800 114/114 [==============================] - 0s 907us/sample - loss: 0.8287 - accuracy: 0.9386 - val_loss: 0.7514 - val_accuracy: 0.9524 Epoch 222/800 114/114 [==============================] - 0s 899us/sample - loss: 0.7399 - accuracy: 0.9825 - val_loss: 0.7292 - val_accuracy: 0.9524 Epoch 223/800 114/114 [==============================] - 0s 890us/sample - loss: 0.7648 - accuracy: 0.9825 - val_loss: 0.7152 - val_accuracy: 1.0000 Epoch 224/800 114/114 [==============================] - 0s 894us/sample - loss: 0.7947 - accuracy: 0.9737 - val_loss: 0.7150 - val_accuracy: 1.0000 Epoch 225/800 114/114 [==============================] - 0s 869us/sample - loss: 0.7930 - accuracy: 0.9474 - val_loss: 0.7328 - val_accuracy: 0.9524 Epoch 226/800 114/114 [==============================] - 0s 884us/sample - loss: 0.7619 - accuracy: 0.9649 - val_loss: 0.7320 - val_accuracy: 0.9524 Epoch 227/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.8142 - accuracy: 0.9561 - val_loss: 0.7199 - val_accuracy: 1.0000 Epoch 228/800 114/114 [==============================] - 0s 912us/sample - loss: 0.7348 - accuracy: 0.9737 - val_loss: 0.7178 - val_accuracy: 1.0000 Epoch 229/800 114/114 [==============================] - 0s 884us/sample - loss: 0.7955 - accuracy: 0.9474 - val_loss: 0.7234 - val_accuracy: 0.9524 Epoch 230/800 114/114 [==============================] - 0s 899us/sample - loss: 0.7804 - accuracy: 0.9561 - val_loss: 0.7338 - val_accuracy: 0.9524 Epoch 231/800 114/114 [==============================] - 0s 874us/sample - loss: 0.7480 - accuracy: 0.9737 - val_loss: 0.7653 - val_accuracy: 0.9524 Epoch 232/800 114/114 [==============================] - 0s 874us/sample - loss: 0.7505 - accuracy: 0.9737 - val_loss: 0.7767 - val_accuracy: 0.9524 Epoch 233/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7590 - accuracy: 0.9737 - val_loss: 0.7594 - val_accuracy: 0.9524 Epoch 234/800 114/114 [==============================] - 0s 872us/sample - loss: 0.7410 - accuracy: 0.9912 - val_loss: 0.7488 - val_accuracy: 0.9524 Epoch 235/800 114/114 [==============================] - 0s 892us/sample - loss: 0.8138 - accuracy: 0.9561 - val_loss: 0.7327 - val_accuracy: 0.9524 Epoch 236/800 114/114 [==============================] - 0s 887us/sample - loss: 0.7385 - accuracy: 0.9825 - val_loss: 0.7180 - val_accuracy: 0.9524 Epoch 237/800 114/114 [==============================] - 0s 872us/sample - loss: 0.7447 - accuracy: 0.9825 - val_loss: 0.7158 - val_accuracy: 0.9524 Epoch 238/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7742 - accuracy: 0.9825 - val_loss: 0.7189 - val_accuracy: 0.9524 Epoch 239/800 114/114 [==============================] - 0s 934us/sample - loss: 0.7251 - accuracy: 0.9912 - val_loss: 0.7126 - val_accuracy: 1.0000 Epoch 240/800 114/114 [==============================] - 0s 880us/sample - loss: 0.7684 - accuracy: 0.9737 - val_loss: 0.7089 - val_accuracy: 1.0000 Epoch 241/800 114/114 [==============================] - 0s 882us/sample - loss: 0.7440 - accuracy: 0.9912 - val_loss: 0.7074 - val_accuracy: 1.0000 Epoch 242/800 114/114 [==============================] - 0s 893us/sample - loss: 0.7288 - accuracy: 0.9912 - val_loss: 0.7093 - val_accuracy: 1.0000 Epoch 243/800 114/114 [==============================] - 0s 889us/sample - loss: 0.7511 - accuracy: 0.9649 - val_loss: 0.7196 - val_accuracy: 0.9524 Epoch 244/800 114/114 [==============================] - 0s 908us/sample - loss: 0.7744 - accuracy: 0.9561 - val_loss: 0.7262 - val_accuracy: 0.9524 Epoch 245/800 114/114 [==============================] - 0s 904us/sample - loss: 0.7580 - accuracy: 0.9912 - val_loss: 0.7408 - val_accuracy: 0.9524 Epoch 246/800 114/114 [==============================] - 0s 882us/sample - loss: 0.7469 - accuracy: 0.9649 - val_loss: 0.7379 - val_accuracy: 0.9524 Epoch 247/800 114/114 [==============================] - 0s 898us/sample - loss: 0.7676 - accuracy: 0.9649 - val_loss: 0.7282 - val_accuracy: 0.9524 Epoch 248/800 114/114 [==============================] - 0s 887us/sample - loss: 0.7097 - accuracy: 1.0000 - val_loss: 0.7282 - val_accuracy: 0.9524 Epoch 249/800 114/114 [==============================] - 0s 859us/sample - loss: 0.7382 - accuracy: 0.9912 - val_loss: 0.7254 - val_accuracy: 0.9524 Epoch 250/800 114/114 [==============================] - 0s 944us/sample - loss: 0.7666 - accuracy: 0.9737 - val_loss: 0.7199 - val_accuracy: 0.9524 Epoch 251/800 114/114 [==============================] - 0s 873us/sample - loss: 0.7364 - accuracy: 0.9737 - val_loss: 0.7347 - val_accuracy: 0.9524 Epoch 252/800 114/114 [==============================] - 0s 942us/sample - loss: 0.7449 - accuracy: 0.9649 - val_loss: 0.7600 - val_accuracy: 0.9524 Epoch 253/800 114/114 [==============================] - 0s 865us/sample - loss: 0.7425 - accuracy: 0.9649 - val_loss: 0.7613 - val_accuracy: 0.9524 Epoch 254/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7276 - accuracy: 0.9737 - val_loss: 0.7320 - val_accuracy: 0.9524 Epoch 255/800 114/114 [==============================] - 0s 897us/sample - loss: 0.7546 - accuracy: 0.9737 - val_loss: 0.6951 - val_accuracy: 1.0000 Epoch 256/800 114/114 [==============================] - 0s 901us/sample - loss: 0.7543 - accuracy: 0.9737 - val_loss: 0.6849 - val_accuracy: 1.0000 Epoch 257/800 114/114 [==============================] - 0s 879us/sample - loss: 0.7754 - accuracy: 0.9561 - val_loss: 0.6806 - val_accuracy: 1.0000 Epoch 258/800 114/114 [==============================] - 0s 869us/sample - loss: 0.7353 - accuracy: 0.9737 - val_loss: 0.6850 - val_accuracy: 1.0000 Epoch 259/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7148 - accuracy: 0.9825 - val_loss: 0.6992 - val_accuracy: 1.0000 Epoch 260/800 114/114 [==============================] - 0s 896us/sample - loss: 0.7199 - accuracy: 0.9912 - val_loss: 0.7280 - val_accuracy: 0.9524 Epoch 261/800 114/114 [==============================] - 0s 911us/sample - loss: 0.7248 - accuracy: 0.9737 - val_loss: 0.7402 - val_accuracy: 0.9524 Epoch 262/800 114/114 [==============================] - 0s 887us/sample - loss: 0.7715 - accuracy: 0.9561 - val_loss: 0.7577 - val_accuracy: 0.9524 Epoch 263/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7357 - accuracy: 0.9737 - val_loss: 0.7333 - val_accuracy: 0.9524 Epoch 264/800 114/114 [==============================] - 0s 920us/sample - loss: 0.7683 - accuracy: 0.9737 - val_loss: 0.7203 - val_accuracy: 0.9524 Epoch 265/800 114/114 [==============================] - 0s 926us/sample - loss: 0.7582 - accuracy: 0.9737 - val_loss: 0.7141 - val_accuracy: 0.9524 Epoch 266/800 114/114 [==============================] - 0s 851us/sample - loss: 0.7585 - accuracy: 0.9474 - val_loss: 0.7129 - val_accuracy: 0.9524 Epoch 267/800 114/114 [==============================] - 0s 967us/sample - loss: 0.7129 - accuracy: 0.9912 - val_loss: 0.7141 - val_accuracy: 0.9524 Epoch 268/800 114/114 [==============================] - 0s 883us/sample - loss: 0.7522 - accuracy: 0.9649 - val_loss: 0.7013 - val_accuracy: 0.9524 Epoch 269/800 114/114 [==============================] - 0s 880us/sample - loss: 0.7295 - accuracy: 0.9912 - val_loss: 0.7012 - val_accuracy: 0.9524 Epoch 270/800 114/114 [==============================] - 0s 891us/sample - loss: 0.7010 - accuracy: 0.9912 - val_loss: 0.7021 - val_accuracy: 0.9524 Epoch 271/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7042 - accuracy: 0.9825 - val_loss: 0.7018 - val_accuracy: 0.9524 Epoch 272/800 114/114 [==============================] - 0s 885us/sample - loss: 0.7080 - accuracy: 0.9912 - val_loss: 0.7080 - val_accuracy: 0.9524 Epoch 273/800 114/114 [==============================] - 0s 924us/sample - loss: 0.7426 - accuracy: 0.9649 - val_loss: 0.7238 - val_accuracy: 0.9524 Epoch 274/800 114/114 [==============================] - 0s 898us/sample - loss: 0.7378 - accuracy: 0.9737 - val_loss: 0.7529 - val_accuracy: 0.9524 Epoch 275/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7085 - accuracy: 0.9737 - val_loss: 0.7445 - val_accuracy: 0.9524 Epoch 276/800 114/114 [==============================] - 0s 959us/sample - loss: 0.7224 - accuracy: 0.9825 - val_loss: 0.7282 - val_accuracy: 0.9524 Epoch 277/800 114/114 [==============================] - 0s 900us/sample - loss: 0.7310 - accuracy: 0.9737 - val_loss: 0.7174 - val_accuracy: 0.9524 Epoch 278/800 114/114 [==============================] - 0s 896us/sample - loss: 0.7289 - accuracy: 0.9737 - val_loss: 0.6981 - val_accuracy: 0.9524 Epoch 279/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7166 - accuracy: 0.9825 - val_loss: 0.6917 - val_accuracy: 1.0000 Epoch 280/800 114/114 [==============================] - 0s 916us/sample - loss: 0.7266 - accuracy: 0.9825 - val_loss: 0.7056 - val_accuracy: 0.9524 Epoch 281/800 114/114 [==============================] - 0s 918us/sample - loss: 0.7308 - accuracy: 0.9825 - val_loss: 0.7100 - val_accuracy: 0.9524 Epoch 282/800 114/114 [==============================] - 0s 880us/sample - loss: 0.7244 - accuracy: 0.9649 - val_loss: 0.7152 - val_accuracy: 0.9524 Epoch 283/800 114/114 [==============================] - 0s 849us/sample - loss: 0.7671 - accuracy: 0.9561 - val_loss: 0.7466 - val_accuracy: 0.9524 Epoch 284/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7304 - accuracy: 0.9737 - val_loss: 0.7505 - val_accuracy: 0.9524 Epoch 285/800 114/114 [==============================] - 0s 927us/sample - loss: 0.7627 - accuracy: 0.9474 - val_loss: 0.7688 - val_accuracy: 0.9524 Epoch 286/800 114/114 [==============================] - 0s 877us/sample - loss: 0.7235 - accuracy: 0.9825 - val_loss: 0.7557 - val_accuracy: 0.9524 Epoch 287/800 114/114 [==============================] - 0s 900us/sample - loss: 0.7063 - accuracy: 0.9825 - val_loss: 0.7442 - val_accuracy: 0.9524 Epoch 288/800 114/114 [==============================] - 0s 881us/sample - loss: 0.7034 - accuracy: 0.9825 - val_loss: 0.7136 - val_accuracy: 0.9524 Epoch 289/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7613 - accuracy: 0.9737 - val_loss: 0.6925 - val_accuracy: 0.9524 Epoch 290/800 114/114 [==============================] - 0s 894us/sample - loss: 0.7186 - accuracy: 0.9737 - val_loss: 0.6840 - val_accuracy: 1.0000 Epoch 291/800 114/114 [==============================] - 0s 874us/sample - loss: 0.7760 - accuracy: 0.9561 - val_loss: 0.6874 - val_accuracy: 1.0000 Epoch 292/800 114/114 [==============================] - 0s 901us/sample - loss: 0.7125 - accuracy: 0.9825 - val_loss: 0.7062 - val_accuracy: 0.9524 Epoch 293/800 114/114 [==============================] - 0s 949us/sample - loss: 0.7343 - accuracy: 0.9561 - val_loss: 0.7264 - val_accuracy: 0.9524 Epoch 294/800 114/114 [==============================] - 0s 922us/sample - loss: 0.7179 - accuracy: 0.9825 - val_loss: 0.7349 - val_accuracy: 0.9524 Epoch 295/800 114/114 [==============================] - 0s 882us/sample - loss: 0.6953 - accuracy: 0.9912 - val_loss: 0.7352 - val_accuracy: 0.9524 Epoch 296/800 114/114 [==============================] - 0s 873us/sample - loss: 0.7177 - accuracy: 0.9737 - val_loss: 0.7355 - val_accuracy: 0.9524 Epoch 297/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7151 - accuracy: 0.9825 - val_loss: 0.7361 - val_accuracy: 0.9524 Epoch 298/800 114/114 [==============================] - 0s 961us/sample - loss: 0.7384 - accuracy: 0.9737 - val_loss: 0.7551 - val_accuracy: 0.9524 Epoch 299/800 114/114 [==============================] - 0s 890us/sample - loss: 0.7831 - accuracy: 0.9386 - val_loss: 0.7382 - val_accuracy: 0.9524 Epoch 300/800 114/114 [==============================] - 0s 903us/sample - loss: 0.7306 - accuracy: 0.9561 - val_loss: 0.7399 - val_accuracy: 0.9524 Epoch 301/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6985 - accuracy: 0.9912 - val_loss: 0.7346 - val_accuracy: 0.9524 Epoch 302/800 114/114 [==============================] - 0s 894us/sample - loss: 0.7395 - accuracy: 0.9649 - val_loss: 0.7253 - val_accuracy: 0.9524 Epoch 303/800 114/114 [==============================] - 0s 914us/sample - loss: 0.7263 - accuracy: 0.9825 - val_loss: 0.7551 - val_accuracy: 0.9524 Epoch 304/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7197 - accuracy: 0.9649 - val_loss: 0.7714 - val_accuracy: 0.9524 Epoch 305/800 114/114 [==============================] - 0s 923us/sample - loss: 0.7408 - accuracy: 0.9737 - val_loss: 0.7547 - val_accuracy: 0.9524 Epoch 306/800 114/114 [==============================] - 0s 902us/sample - loss: 0.7241 - accuracy: 0.9737 - val_loss: 0.7400 - val_accuracy: 0.9524 Epoch 307/800 114/114 [==============================] - 0s 904us/sample - loss: 0.7468 - accuracy: 0.9561 - val_loss: 0.7548 - val_accuracy: 0.9524 Epoch 308/800 114/114 [==============================] - 0s 878us/sample - loss: 0.7201 - accuracy: 0.9737 - val_loss: 0.7724 - val_accuracy: 0.9524 Epoch 309/800 114/114 [==============================] - 0s 862us/sample - loss: 0.7212 - accuracy: 0.9737 - val_loss: 0.7719 - val_accuracy: 0.9524 Epoch 310/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7016 - accuracy: 0.9737 - val_loss: 0.7642 - val_accuracy: 0.9524 Epoch 311/800 114/114 [==============================] - 0s 927us/sample - loss: 0.7049 - accuracy: 0.9912 - val_loss: 0.7589 - val_accuracy: 0.9524 Epoch 312/800 114/114 [==============================] - 0s 904us/sample - loss: 0.7346 - accuracy: 0.9649 - val_loss: 0.7630 - val_accuracy: 0.9524 Epoch 313/800 114/114 [==============================] - 0s 933us/sample - loss: 0.7358 - accuracy: 0.9737 - val_loss: 0.7581 - val_accuracy: 0.9524 Epoch 314/800 114/114 [==============================] - 0s 970us/sample - loss: 0.7261 - accuracy: 0.9737 - val_loss: 0.7626 - val_accuracy: 0.9524 Epoch 315/800 114/114 [==============================] - 0s 882us/sample - loss: 0.7382 - accuracy: 0.9825 - val_loss: 0.7714 - val_accuracy: 0.9524 Epoch 316/800 114/114 [==============================] - 0s 916us/sample - loss: 0.7419 - accuracy: 0.9649 - val_loss: 0.7681 - val_accuracy: 0.9524 Epoch 317/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7183 - accuracy: 0.9737 - val_loss: 0.7415 - val_accuracy: 0.9524 Epoch 318/800 114/114 [==============================] - 0s 984us/sample - loss: 0.7014 - accuracy: 0.9737 - val_loss: 0.7043 - val_accuracy: 0.9524 Epoch 319/800 114/114 [==============================] - 0s 855us/sample - loss: 0.7221 - accuracy: 0.9825 - val_loss: 0.7038 - val_accuracy: 0.9524 Epoch 320/800 114/114 [==============================] - 0s 911us/sample - loss: 0.7272 - accuracy: 0.9737 - val_loss: 0.7305 - val_accuracy: 0.9524 Epoch 321/800 114/114 [==============================] - 0s 945us/sample - loss: 0.7442 - accuracy: 0.9561 - val_loss: 0.7430 - val_accuracy: 0.9524 Epoch 322/800 114/114 [==============================] - 0s 871us/sample - loss: 0.6817 - accuracy: 0.9825 - val_loss: 0.7602 - val_accuracy: 0.9524 Epoch 323/800 114/114 [==============================] - 0s 890us/sample - loss: 0.6953 - accuracy: 0.9737 - val_loss: 0.7770 - val_accuracy: 0.9524 Epoch 324/800 114/114 [==============================] - 0s 838us/sample - loss: 0.7266 - accuracy: 0.9561 - val_loss: 0.7436 - val_accuracy: 0.9524 Epoch 325/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7208 - accuracy: 0.9737 - val_loss: 0.7241 - val_accuracy: 0.9524 Epoch 326/800 114/114 [==============================] - 0s 868us/sample - loss: 0.7226 - accuracy: 0.9561 - val_loss: 0.7322 - val_accuracy: 0.9524 Epoch 327/800 114/114 [==============================] - 0s 922us/sample - loss: 0.7218 - accuracy: 0.9825 - val_loss: 0.7367 - val_accuracy: 0.9524 Epoch 328/800 114/114 [==============================] - 0s 900us/sample - loss: 0.6962 - accuracy: 0.9737 - val_loss: 0.7408 - val_accuracy: 0.9524 Epoch 329/800 114/114 [==============================] - 0s 869us/sample - loss: 0.6968 - accuracy: 0.9737 - val_loss: 0.7332 - val_accuracy: 0.9524 Epoch 330/800 114/114 [==============================] - 0s 953us/sample - loss: 0.6821 - accuracy: 0.9737 - val_loss: 0.7253 - val_accuracy: 0.9524 Epoch 331/800 114/114 [==============================] - 0s 924us/sample - loss: 0.6887 - accuracy: 0.9912 - val_loss: 0.7173 - val_accuracy: 0.9524 Epoch 332/800 114/114 [==============================] - 0s 871us/sample - loss: 0.6975 - accuracy: 0.9737 - val_loss: 0.6904 - val_accuracy: 0.9524 Epoch 333/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7174 - accuracy: 0.9561 - val_loss: 0.6800 - val_accuracy: 0.9524 Epoch 334/800 114/114 [==============================] - 0s 937us/sample - loss: 0.6890 - accuracy: 0.9912 - val_loss: 0.6882 - val_accuracy: 0.9524 Epoch 335/800 114/114 [==============================] - 0s 883us/sample - loss: 0.7153 - accuracy: 0.9649 - val_loss: 0.7195 - val_accuracy: 0.9524 Epoch 336/800 114/114 [==============================] - 0s 866us/sample - loss: 0.6790 - accuracy: 0.9912 - val_loss: 0.7525 - val_accuracy: 0.9524 Epoch 337/800 114/114 [==============================] - 0s 882us/sample - loss: 0.7078 - accuracy: 0.9649 - val_loss: 0.7538 - val_accuracy: 0.9524 Epoch 338/800 114/114 [==============================] - 0s 931us/sample - loss: 0.6802 - accuracy: 0.9649 - val_loss: 0.7472 - val_accuracy: 0.9524 Epoch 339/800 114/114 [==============================] - 0s 925us/sample - loss: 0.6765 - accuracy: 0.9825 - val_loss: 0.7375 - val_accuracy: 0.9524 Epoch 340/800 114/114 [==============================] - 0s 869us/sample - loss: 0.6702 - accuracy: 0.9825 - val_loss: 0.7384 - val_accuracy: 0.9524 Epoch 341/800 114/114 [==============================] - 0s 901us/sample - loss: 0.6939 - accuracy: 0.9737 - val_loss: 0.7302 - val_accuracy: 0.9524 Epoch 342/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6893 - accuracy: 0.9737 - val_loss: 0.7108 - val_accuracy: 0.9524 Epoch 343/800 114/114 [==============================] - 0s 934us/sample - loss: 0.6961 - accuracy: 0.9737 - val_loss: 0.7174 - val_accuracy: 0.9524 Epoch 344/800 114/114 [==============================] - 0s 906us/sample - loss: 0.7062 - accuracy: 0.9825 - val_loss: 0.7487 - val_accuracy: 0.9524 Epoch 345/800 114/114 [==============================] - 0s 904us/sample - loss: 0.7005 - accuracy: 0.9737 - val_loss: 0.7499 - val_accuracy: 0.9524 Epoch 346/800 114/114 [==============================] - 0s 853us/sample - loss: 0.7150 - accuracy: 0.9737 - val_loss: 0.7152 - val_accuracy: 0.9524 Epoch 347/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6930 - accuracy: 0.9825 - val_loss: 0.7290 - val_accuracy: 0.9524 Epoch 348/800 114/114 [==============================] - 0s 917us/sample - loss: 0.6972 - accuracy: 0.9912 - val_loss: 0.7431 - val_accuracy: 0.9524 Epoch 349/800 114/114 [==============================] - 0s 891us/sample - loss: 0.6893 - accuracy: 0.9825 - val_loss: 0.7323 - val_accuracy: 0.9524 Epoch 350/800 114/114 [==============================] - 0s 893us/sample - loss: 0.6896 - accuracy: 0.9737 - val_loss: 0.6936 - val_accuracy: 0.9524 Epoch 351/800 114/114 [==============================] - 0s 882us/sample - loss: 0.6860 - accuracy: 0.9825 - val_loss: 0.6689 - val_accuracy: 0.9524 Epoch 352/800 114/114 [==============================] - 0s 991us/sample - loss: 0.6997 - accuracy: 0.9737 - val_loss: 0.6702 - val_accuracy: 0.9524 Epoch 353/800 114/114 [==============================] - 0s 875us/sample - loss: 0.6609 - accuracy: 1.0000 - val_loss: 0.6994 - val_accuracy: 0.9524 Epoch 354/800 114/114 [==============================] - 0s 862us/sample - loss: 0.7373 - accuracy: 0.9561 - val_loss: 0.7150 - val_accuracy: 0.9524 Epoch 355/800 114/114 [==============================] - 0s 877us/sample - loss: 0.6924 - accuracy: 0.9737 - val_loss: 0.7376 - val_accuracy: 0.9524 Epoch 356/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7177 - accuracy: 0.9737 - val_loss: 0.7150 - val_accuracy: 0.9524 Epoch 357/800 114/114 [==============================] - 0s 897us/sample - loss: 0.7447 - accuracy: 0.9649 - val_loss: 0.6664 - val_accuracy: 0.9524 Epoch 358/800 114/114 [==============================] - 0s 924us/sample - loss: 0.7058 - accuracy: 0.9737 - val_loss: 0.6423 - val_accuracy: 1.0000 Epoch 359/800 114/114 [==============================] - 0s 877us/sample - loss: 0.7339 - accuracy: 0.9649 - val_loss: 0.6336 - val_accuracy: 1.0000 Epoch 360/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6865 - accuracy: 0.9825 - val_loss: 0.6305 - val_accuracy: 1.0000 Epoch 361/800 114/114 [==============================] - 0s 905us/sample - loss: 0.7206 - accuracy: 0.9649 - val_loss: 0.6315 - val_accuracy: 1.0000 Epoch 362/800 114/114 [==============================] - 0s 890us/sample - loss: 0.6816 - accuracy: 0.9825 - val_loss: 0.6384 - val_accuracy: 1.0000 Epoch 363/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6963 - accuracy: 0.9649 - val_loss: 0.6569 - val_accuracy: 1.0000 Epoch 364/800 114/114 [==============================] - 0s 898us/sample - loss: 0.6715 - accuracy: 0.9825 - val_loss: 0.6687 - val_accuracy: 0.9524 Epoch 365/800 114/114 [==============================] - 0s 915us/sample - loss: 0.7387 - accuracy: 0.9649 - val_loss: 0.6590 - val_accuracy: 0.9524 Epoch 366/800 114/114 [==============================] - 0s 902us/sample - loss: 0.6617 - accuracy: 0.9825 - val_loss: 0.6623 - val_accuracy: 0.9524 Epoch 367/800 114/114 [==============================] - 0s 871us/sample - loss: 0.7113 - accuracy: 0.9649 - val_loss: 0.6637 - val_accuracy: 0.9524 Epoch 368/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7062 - accuracy: 0.9649 - val_loss: 0.6614 - val_accuracy: 0.9524 Epoch 369/800 114/114 [==============================] - 0s 960us/sample - loss: 0.7179 - accuracy: 0.9649 - val_loss: 0.6786 - val_accuracy: 0.9524 Epoch 370/800 114/114 [==============================] - 0s 887us/sample - loss: 0.6513 - accuracy: 0.9912 - val_loss: 0.7157 - val_accuracy: 0.9524 Epoch 371/800 114/114 [==============================] - 0s 901us/sample - loss: 0.7179 - accuracy: 0.9825 - val_loss: 0.7388 - val_accuracy: 0.9524 Epoch 372/800 114/114 [==============================] - 0s 969us/sample - loss: 0.6585 - accuracy: 0.9912 - val_loss: 0.7572 - val_accuracy: 0.9524 Epoch 373/800 114/114 [==============================] - 0s 898us/sample - loss: 0.6790 - accuracy: 0.9912 - val_loss: 0.7562 - val_accuracy: 0.9524 Epoch 374/800 114/114 [==============================] - 0s 897us/sample - loss: 0.6649 - accuracy: 0.9825 - val_loss: 0.7318 - val_accuracy: 0.9524 Epoch 375/800 114/114 [==============================] - 0s 867us/sample - loss: 0.6631 - accuracy: 0.9912 - val_loss: 0.7073 - val_accuracy: 0.9524 Epoch 376/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6890 - accuracy: 0.9737 - val_loss: 0.6938 - val_accuracy: 0.9524 Epoch 377/800 114/114 [==============================] - 0s 957us/sample - loss: 0.6905 - accuracy: 0.9649 - val_loss: 0.7127 - val_accuracy: 0.9524 Epoch 378/800 114/114 [==============================] - 0s 897us/sample - loss: 0.6934 - accuracy: 0.9825 - val_loss: 0.7102 - val_accuracy: 0.9524 Epoch 379/800 114/114 [==============================] - 0s 874us/sample - loss: 0.6888 - accuracy: 0.9825 - val_loss: 0.7126 - val_accuracy: 0.9524 Epoch 380/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.7053 - accuracy: 0.9649 - val_loss: 0.7138 - val_accuracy: 0.9524 Epoch 381/800 114/114 [==============================] - 0s 948us/sample - loss: 0.6792 - accuracy: 0.9825 - val_loss: 0.7161 - val_accuracy: 0.9524 Epoch 382/800 114/114 [==============================] - 0s 885us/sample - loss: 0.6763 - accuracy: 0.9737 - val_loss: 0.6946 - val_accuracy: 0.9524 Epoch 383/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6786 - accuracy: 0.9912 - val_loss: 0.6839 - val_accuracy: 0.9524 Epoch 384/800 114/114 [==============================] - 0s 911us/sample - loss: 0.7051 - accuracy: 0.9825 - val_loss: 0.6751 - val_accuracy: 0.9524 Epoch 385/800 114/114 [==============================] - 0s 885us/sample - loss: 0.6675 - accuracy: 0.9825 - val_loss: 0.6817 - val_accuracy: 0.9524 Epoch 386/800 114/114 [==============================] - 0s 901us/sample - loss: 0.6758 - accuracy: 0.9825 - val_loss: 0.6835 - val_accuracy: 0.9524 Epoch 387/800 114/114 [==============================] - 0s 938us/sample - loss: 0.6634 - accuracy: 0.9825 - val_loss: 0.6803 - val_accuracy: 0.9524 Epoch 388/800 114/114 [==============================] - 0s 934us/sample - loss: 0.6929 - accuracy: 0.9737 - val_loss: 0.6826 - val_accuracy: 0.9524 Epoch 389/800 114/114 [==============================] - 0s 873us/sample - loss: 0.6580 - accuracy: 0.9825 - val_loss: 0.6724 - val_accuracy: 0.9524 Epoch 390/800 114/114 [==============================] - 0s 863us/sample - loss: 0.6875 - accuracy: 0.9737 - val_loss: 0.6421 - val_accuracy: 1.0000 Epoch 391/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6480 - accuracy: 0.9912 - val_loss: 0.6292 - val_accuracy: 1.0000 Epoch 392/800 114/114 [==============================] - 0s 940us/sample - loss: 0.7011 - accuracy: 0.9561 - val_loss: 0.6263 - val_accuracy: 1.0000 Epoch 393/800 114/114 [==============================] - 0s 862us/sample - loss: 0.7113 - accuracy: 0.9737 - val_loss: 0.6331 - val_accuracy: 1.0000 Epoch 394/800 114/114 [==============================] - 0s 891us/sample - loss: 0.6617 - accuracy: 0.9912 - val_loss: 0.6467 - val_accuracy: 1.0000 Epoch 395/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6714 - accuracy: 0.9912 - val_loss: 0.6591 - val_accuracy: 0.9524 Epoch 396/800 114/114 [==============================] - 0s 961us/sample - loss: 0.6743 - accuracy: 0.9825 - val_loss: 0.6770 - val_accuracy: 0.9524 Epoch 397/800 114/114 [==============================] - 0s 887us/sample - loss: 0.6796 - accuracy: 0.9825 - val_loss: 0.6836 - val_accuracy: 0.9524 Epoch 398/800 114/114 [==============================] - 0s 913us/sample - loss: 0.6903 - accuracy: 0.9649 - val_loss: 0.6813 - val_accuracy: 0.9524 Epoch 399/800 114/114 [==============================] - 0s 938us/sample - loss: 0.6927 - accuracy: 0.9649 - val_loss: 0.6600 - val_accuracy: 0.9524 Epoch 400/800 114/114 [==============================] - 0s 904us/sample - loss: 0.6863 - accuracy: 0.9737 - val_loss: 0.6430 - val_accuracy: 1.0000 Epoch 401/800 114/114 [==============================] - 0s 889us/sample - loss: 0.6581 - accuracy: 0.9912 - val_loss: 0.6354 - val_accuracy: 1.0000 Epoch 402/800 114/114 [==============================] - 0s 879us/sample - loss: 0.7595 - accuracy: 0.9474 - val_loss: 0.6498 - val_accuracy: 0.9524 Epoch 403/800 114/114 [==============================] - 0s 903us/sample - loss: 0.6819 - accuracy: 0.9825 - val_loss: 0.6631 - val_accuracy: 0.9524 Epoch 404/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6444 - accuracy: 0.9912 - val_loss: 0.7053 - val_accuracy: 0.9524 Epoch 405/800 114/114 [==============================] - 0s 951us/sample - loss: 0.6839 - accuracy: 0.9649 - val_loss: 0.7370 - val_accuracy: 0.9524 Epoch 406/800 114/114 [==============================] - 0s 900us/sample - loss: 0.6921 - accuracy: 0.9386 - val_loss: 0.7130 - val_accuracy: 0.9524 Epoch 407/800 114/114 [==============================] - 0s 874us/sample - loss: 0.6920 - accuracy: 0.9649 - val_loss: 0.7000 - val_accuracy: 0.9524 Epoch 408/800 114/114 [==============================] - 0s 845us/sample - loss: 0.6771 - accuracy: 0.9825 - val_loss: 0.6874 - val_accuracy: 0.9524 Epoch 409/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6787 - accuracy: 0.9737 - val_loss: 0.6912 - val_accuracy: 0.9524 Epoch 410/800 114/114 [==============================] - 0s 866us/sample - loss: 0.6689 - accuracy: 0.9825 - val_loss: 0.7111 - val_accuracy: 0.9524 Epoch 411/800 114/114 [==============================] - 0s 896us/sample - loss: 0.6654 - accuracy: 0.9737 - val_loss: 0.7236 - val_accuracy: 0.9524 Epoch 412/800 114/114 [==============================] - 0s 903us/sample - loss: 0.6960 - accuracy: 0.9737 - val_loss: 0.7269 - val_accuracy: 0.9524 Epoch 413/800 114/114 [==============================] - 0s 965us/sample - loss: 0.6776 - accuracy: 0.9649 - val_loss: 0.7100 - val_accuracy: 0.9524 Epoch 414/800 114/114 [==============================] - 0s 886us/sample - loss: 0.6497 - accuracy: 0.9825 - val_loss: 0.7177 - val_accuracy: 0.9524 Epoch 415/800 114/114 [==============================] - 0s 900us/sample - loss: 0.6731 - accuracy: 0.9737 - val_loss: 0.7290 - val_accuracy: 0.9524 Epoch 416/800 114/114 [==============================] - 0s 891us/sample - loss: 0.6613 - accuracy: 0.9737 - val_loss: 0.7278 - val_accuracy: 0.9524 Epoch 417/800 114/114 [==============================] - 0s 849us/sample - loss: 0.6416 - accuracy: 0.9912 - val_loss: 0.6974 - val_accuracy: 0.9524 Epoch 418/800 114/114 [==============================] - 0s 868us/sample - loss: 0.6942 - accuracy: 0.9825 - val_loss: 0.6838 - val_accuracy: 0.9524 Epoch 419/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6685 - accuracy: 0.9649 - val_loss: 0.6702 - val_accuracy: 0.9524 Epoch 420/800 114/114 [==============================] - 0s 929us/sample - loss: 0.6444 - accuracy: 0.9912 - val_loss: 0.6566 - val_accuracy: 0.9524 Epoch 421/800 114/114 [==============================] - 0s 858us/sample - loss: 0.6385 - accuracy: 0.9825 - val_loss: 0.6578 - val_accuracy: 0.9524 Epoch 422/800 114/114 [==============================] - 0s 903us/sample - loss: 0.6736 - accuracy: 0.9737 - val_loss: 0.6648 - val_accuracy: 0.9524 Epoch 423/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6815 - accuracy: 0.9737 - val_loss: 0.6774 - val_accuracy: 0.9524 Epoch 424/800 114/114 [==============================] - 0s 900us/sample - loss: 0.6631 - accuracy: 0.9912 - val_loss: 0.7113 - val_accuracy: 0.9524 Epoch 425/800 114/114 [==============================] - 0s 912us/sample - loss: 0.6549 - accuracy: 0.9825 - val_loss: 0.7665 - val_accuracy: 0.9524 Epoch 426/800 114/114 [==============================] - 0s 967us/sample - loss: 0.6538 - accuracy: 0.9737 - val_loss: 0.7936 - val_accuracy: 0.9524 Epoch 427/800 114/114 [==============================] - 0s 881us/sample - loss: 0.6582 - accuracy: 0.9561 - val_loss: 0.7641 - val_accuracy: 0.9524 Epoch 428/800 114/114 [==============================] - 0s 892us/sample - loss: 0.7181 - accuracy: 0.9737 - val_loss: 0.6706 - val_accuracy: 0.9524 Epoch 429/800 114/114 [==============================] - 0s 886us/sample - loss: 0.6652 - accuracy: 0.9649 - val_loss: 0.6496 - val_accuracy: 0.9524 Epoch 430/800 114/114 [==============================] - 0s 892us/sample - loss: 0.6544 - accuracy: 0.9912 - val_loss: 0.6468 - val_accuracy: 0.9524 Epoch 431/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6475 - accuracy: 0.9825 - val_loss: 0.6445 - val_accuracy: 0.9524 Epoch 432/800 114/114 [==============================] - 0s 912us/sample - loss: 0.7227 - accuracy: 0.9561 - val_loss: 0.6602 - val_accuracy: 0.9524 Epoch 433/800 114/114 [==============================] - 0s 948us/sample - loss: 0.6468 - accuracy: 0.9912 - val_loss: 0.6838 - val_accuracy: 0.9524 Epoch 434/800 114/114 [==============================] - 0s 859us/sample - loss: 0.6498 - accuracy: 0.9737 - val_loss: 0.7042 - val_accuracy: 0.9524 Epoch 435/800 114/114 [==============================] - 0s 851us/sample - loss: 0.6624 - accuracy: 0.9825 - val_loss: 0.7625 - val_accuracy: 0.9524 Epoch 436/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6478 - accuracy: 0.9825 - val_loss: 0.7879 - val_accuracy: 0.9524 Epoch 437/800 114/114 [==============================] - 0s 915us/sample - loss: 0.6579 - accuracy: 0.9825 - val_loss: 0.8052 - val_accuracy: 0.9524 Epoch 438/800 114/114 [==============================] - 0s 914us/sample - loss: 0.6626 - accuracy: 0.9825 - val_loss: 0.7476 - val_accuracy: 0.9524 Epoch 439/800 114/114 [==============================] - 0s 987us/sample - loss: 0.6452 - accuracy: 0.9912 - val_loss: 0.6687 - val_accuracy: 0.9524 Epoch 440/800 114/114 [==============================] - 0s 877us/sample - loss: 0.6738 - accuracy: 0.9649 - val_loss: 0.6274 - val_accuracy: 1.0000 Epoch 441/800 114/114 [==============================] - 0s 867us/sample - loss: 0.6521 - accuracy: 0.9912 - val_loss: 0.6178 - val_accuracy: 1.0000 Epoch 442/800 114/114 [==============================] - 0s 889us/sample - loss: 0.6568 - accuracy: 0.9825 - val_loss: 0.6183 - val_accuracy: 1.0000 Epoch 443/800 114/114 [==============================] - 0s 885us/sample - loss: 0.6688 - accuracy: 0.9825 - val_loss: 0.6200 - val_accuracy: 1.0000 Epoch 444/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6507 - accuracy: 0.9825 - val_loss: 0.6204 - val_accuracy: 1.0000 Epoch 445/800 114/114 [==============================] - 0s 915us/sample - loss: 0.6829 - accuracy: 0.9737 - val_loss: 0.6417 - val_accuracy: 0.9524 Epoch 446/800 114/114 [==============================] - 0s 899us/sample - loss: 0.6371 - accuracy: 0.9912 - val_loss: 0.6678 - val_accuracy: 0.9524 Epoch 447/800 114/114 [==============================] - 0s 885us/sample - loss: 0.6477 - accuracy: 0.9825 - val_loss: 0.6748 - val_accuracy: 0.9524 Epoch 448/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6703 - accuracy: 0.9825 - val_loss: 0.6701 - val_accuracy: 0.9524 Epoch 449/800 114/114 [==============================] - 0s 929us/sample - loss: 0.6362 - accuracy: 0.9737 - val_loss: 0.6623 - val_accuracy: 0.9524 Epoch 450/800 114/114 [==============================] - 0s 887us/sample - loss: 0.6245 - accuracy: 0.9912 - val_loss: 0.6449 - val_accuracy: 0.9524 Epoch 451/800 114/114 [==============================] - 0s 885us/sample - loss: 0.6296 - accuracy: 0.9825 - val_loss: 0.6333 - val_accuracy: 0.9524 Epoch 452/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6458 - accuracy: 0.9737 - val_loss: 0.6320 - val_accuracy: 0.9524 Epoch 453/800 114/114 [==============================] - 0s 921us/sample - loss: 0.6593 - accuracy: 0.9649 - val_loss: 0.6468 - val_accuracy: 0.9524 Epoch 454/800 114/114 [==============================] - 0s 926us/sample - loss: 0.6355 - accuracy: 0.9912 - val_loss: 0.6823 - val_accuracy: 0.9524 Epoch 455/800 114/114 [==============================] - 0s 879us/sample - loss: 0.6290 - accuracy: 0.9912 - val_loss: 0.6855 - val_accuracy: 0.9524 Epoch 456/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6129 - accuracy: 1.0000 - val_loss: 0.6858 - val_accuracy: 0.9524 Epoch 457/800 114/114 [==============================] - 0s 906us/sample - loss: 0.6622 - accuracy: 0.9825 - val_loss: 0.6516 - val_accuracy: 0.9524 Epoch 458/800 114/114 [==============================] - 0s 852us/sample - loss: 0.6080 - accuracy: 1.0000 - val_loss: 0.6324 - val_accuracy: 0.9524 Epoch 459/800 114/114 [==============================] - 0s 898us/sample - loss: 0.6698 - accuracy: 0.9825 - val_loss: 0.6343 - val_accuracy: 0.9524 Epoch 460/800 114/114 [==============================] - 0s 943us/sample - loss: 0.6567 - accuracy: 0.9737 - val_loss: 0.6423 - val_accuracy: 0.9524 Epoch 461/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6539 - accuracy: 0.9737 - val_loss: 0.6334 - val_accuracy: 0.9524 Epoch 462/800 114/114 [==============================] - 0s 910us/sample - loss: 0.6224 - accuracy: 0.9912 - val_loss: 0.6303 - val_accuracy: 0.9524 Epoch 463/800 114/114 [==============================] - 0s 878us/sample - loss: 0.6542 - accuracy: 0.9825 - val_loss: 0.6503 - val_accuracy: 0.9524 Epoch 464/800 114/114 [==============================] - 0s 894us/sample - loss: 0.6301 - accuracy: 0.9912 - val_loss: 0.6633 - val_accuracy: 0.9524 Epoch 465/800 114/114 [==============================] - 0s 969us/sample - loss: 0.6327 - accuracy: 0.9825 - val_loss: 0.6679 - val_accuracy: 0.9524 Epoch 466/800 114/114 [==============================] - 0s 905us/sample - loss: 0.6298 - accuracy: 0.9737 - val_loss: 0.6722 - val_accuracy: 0.9524 Epoch 467/800 114/114 [==============================] - 0s 893us/sample - loss: 0.6546 - accuracy: 0.9737 - val_loss: 0.6450 - val_accuracy: 0.9524 Epoch 468/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6256 - accuracy: 0.9825 - val_loss: 0.6391 - val_accuracy: 0.9524 Epoch 469/800 114/114 [==============================] - 0s 896us/sample - loss: 0.6769 - accuracy: 0.9737 - val_loss: 0.6223 - val_accuracy: 1.0000 Epoch 470/800 114/114 [==============================] - 0s 892us/sample - loss: 0.6752 - accuracy: 0.9737 - val_loss: 0.6274 - val_accuracy: 0.9524 Epoch 471/800 114/114 [==============================] - 0s 880us/sample - loss: 0.6485 - accuracy: 0.9649 - val_loss: 0.6449 - val_accuracy: 0.9524 Epoch 472/800 114/114 [==============================] - 0s 888us/sample - loss: 0.6668 - accuracy: 0.9825 - val_loss: 0.6478 - val_accuracy: 0.9524 Epoch 473/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6710 - accuracy: 0.9737 - val_loss: 0.6644 - val_accuracy: 0.9524 Epoch 474/800 114/114 [==============================] - 0s 921us/sample - loss: 0.6526 - accuracy: 0.9649 - val_loss: 0.6631 - val_accuracy: 0.9524 Epoch 475/800 114/114 [==============================] - 0s 886us/sample - loss: 0.6189 - accuracy: 0.9912 - val_loss: 0.6694 - val_accuracy: 0.9524 Epoch 476/800 114/114 [==============================] - 0s 868us/sample - loss: 0.6424 - accuracy: 0.9737 - val_loss: 0.6685 - val_accuracy: 0.9524 Epoch 477/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6387 - accuracy: 0.9912 - val_loss: 0.6654 - val_accuracy: 0.9524 Epoch 478/800 114/114 [==============================] - 0s 956us/sample - loss: 0.6780 - accuracy: 0.9825 - val_loss: 0.6348 - val_accuracy: 0.9524 Epoch 479/800 114/114 [==============================] - 0s 894us/sample - loss: 0.6562 - accuracy: 0.9825 - val_loss: 0.6126 - val_accuracy: 1.0000 Epoch 480/800 114/114 [==============================] - 0s 895us/sample - loss: 0.6447 - accuracy: 0.9912 - val_loss: 0.6070 - val_accuracy: 1.0000 Epoch 481/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6611 - accuracy: 0.9737 - val_loss: 0.6158 - val_accuracy: 1.0000 Epoch 482/800 114/114 [==============================] - 0s 895us/sample - loss: 0.6510 - accuracy: 0.9825 - val_loss: 0.6293 - val_accuracy: 0.9524 Epoch 483/800 114/114 [==============================] - 0s 939us/sample - loss: 0.6431 - accuracy: 0.9737 - val_loss: 0.6671 - val_accuracy: 0.9524 Epoch 484/800 114/114 [==============================] - 0s 860us/sample - loss: 0.6369 - accuracy: 0.9825 - val_loss: 0.7084 - val_accuracy: 0.9524 Epoch 485/800 114/114 [==============================] - 0s 873us/sample - loss: 0.6468 - accuracy: 0.9825 - val_loss: 0.7150 - val_accuracy: 0.9524 Epoch 486/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6156 - accuracy: 0.9825 - val_loss: 0.6832 - val_accuracy: 0.9524 Epoch 487/800 114/114 [==============================] - 0s 1ms/sample - loss: 0.6533 - accuracy: 0.9825 - val_loss: 0.6430 - val_accuracy: 0.9524 Epoch 488/800 114/114 [==============================] - 0s 840us/sample - loss: 0.6265 - accuracy: 0.9912 - val_loss: 0.6253 - val_accuracy: 0.9524 Epoch 489/800 114/114 [==============================] - 0s 880us/sample - loss: 0.6623 - accuracy: 0.9649 - val_loss: 0.6144 - val_accuracy: 1.0000 Epoch 490/800 114/114 [==============================] - 0s 853us/sample - loss: 0.6663 - accuracy: 0.9649 - val_loss: 0.6002 - val_accuracy: 1.0000 Epoch 491/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6674 - accuracy: 0.9737 - val_loss: 0.5950 - val_accuracy: 1.0000 Epoch 492/800 114/114 [==============================] - 0s 888us/sample - loss: 0.6820 - accuracy: 0.9474 - val_loss: 0.5996 - val_accuracy: 1.0000 Epoch 493/800 114/114 [==============================] - 0s 895us/sample - loss: 0.6585 - accuracy: 0.9825 - val_loss: 0.6158 - val_accuracy: 1.0000 Epoch 494/800 114/114 [==============================] - 0s 928us/sample - loss: 0.6533 - accuracy: 0.9737 - val_loss: 0.6218 - val_accuracy: 0.9524 Epoch 495/800 114/114 [==============================] - 0s 903us/sample - loss: 0.6838 - accuracy: 0.9649 - val_loss: 0.6325 - val_accuracy: 0.9524 Epoch 496/800 114/114 [==============================] - 0s 885us/sample - loss: 0.6436 - accuracy: 0.9649 - val_loss: 0.6487 - val_accuracy: 0.9524 Epoch 497/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6340 - accuracy: 0.9825 - val_loss: 0.6460 - val_accuracy: 0.9524 Epoch 498/800 114/114 [==============================] - 0s 876us/sample - loss: 0.6076 - accuracy: 0.9912 - val_loss: 0.6423 - val_accuracy: 0.9524 Epoch 499/800 114/114 [==============================] - 0s 881us/sample - loss: 0.6191 - accuracy: 0.9912 - val_loss: 0.6376 - val_accuracy: 0.9524 Epoch 500/800 114/114 [==============================] - 0s 894us/sample - loss: 0.6353 - accuracy: 0.9825 - val_loss: 0.6236 - val_accuracy: 0.9524 Epoch 501/800 114/114 [==============================] - 0s 888us/sample - loss: 0.6614 - accuracy: 0.9737 - val_loss: 0.6261 - val_accuracy: 0.9524 Epoch 502/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6195 - accuracy: 0.9912 - val_loss: 0.6227 - val_accuracy: 0.9524 Epoch 503/800 114/114 [==============================] - 0s 891us/sample - loss: 0.6277 - accuracy: 0.9825 - val_loss: 0.6183 - val_accuracy: 0.9524 Epoch 504/800 114/114 [==============================] - 0s 883us/sample - loss: 0.6282 - accuracy: 0.9825 - val_loss: 0.6130 - val_accuracy: 1.0000 Epoch 505/800 114/114 [==============================] - 0s 914us/sample - loss: 0.6201 - accuracy: 0.9912 - val_loss: 0.6134 - val_accuracy: 1.0000 Epoch 506/800 114/114 [==============================] - 0s 980us/sample - loss: 0.6349 - accuracy: 0.9912 - val_loss: 0.6161 - val_accuracy: 0.9524 Epoch 507/800 114/114 [==============================] - 0s 894us/sample - loss: 0.6562 - accuracy: 0.9737 - val_loss: 0.6076 - val_accuracy: 1.0000 Epoch 508/800 114/114 [==============================] - 0s 890us/sample - loss: 0.6277 - accuracy: 0.9912 - val_loss: 0.5982 - val_accuracy: 1.0000 Epoch 509/800 114/114 [==============================] - 0s 852us/sample - loss: 0.6424 - accuracy: 0.9825 - val_loss: 0.5977 - val_accuracy: 1.0000 Epoch 510/800 114/114 [==============================] - 0s 931us/sample - loss: 0.6417 - accuracy: 0.9649 - val_loss: 0.6003 - val_accuracy: 1.0000 Epoch 511/800 114/114 [==============================] - 0s 871us/sample - loss: 0.6232 - accuracy: 0.9912 - val_loss: 0.6090 - val_accuracy: 1.0000 Epoch 512/800 114/114 [==============================] - 0s 905us/sample - loss: 0.6378 - accuracy: 0.9825 - val_loss: 0.6218 - val_accuracy: 0.9524 Epoch 513/800 114/114 [==============================] - 0s 945us/sample - loss: 0.6707 - accuracy: 0.9561 - val_loss: 0.6466 - val_accuracy: 0.9524 Epoch 514/800 114/114 [==============================] - 0s 857us/sample - loss: 0.6187 - accuracy: 0.9912 - val_loss: 0.6398 - val_accuracy: 0.9524 Epoch 515/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6458 - accuracy: 0.9737 - val_loss: 0.6386 - val_accuracy: 0.9524 Epoch 516/800 114/114 [==============================] - 0s 918us/sample - loss: 0.6149 - accuracy: 0.9825 - val_loss: 0.6407 - val_accuracy: 0.9524 Epoch 517/800 114/114 [==============================] - 0s 893us/sample - loss: 0.6230 - accuracy: 0.9825 - val_loss: 0.6147 - val_accuracy: 0.9524 Epoch 518/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6286 - accuracy: 0.9737 - val_loss: 0.6037 - val_accuracy: 1.0000 Epoch 519/800 114/114 [==============================] - 0s 962us/sample - loss: 0.6467 - accuracy: 0.9825 - val_loss: 0.5955 - val_accuracy: 1.0000 Epoch 520/800 114/114 [==============================] - 0s 886us/sample - loss: 0.6301 - accuracy: 0.9825 - val_loss: 0.5930 - val_accuracy: 1.0000 Epoch 521/800 114/114 [==============================] - 0s 873us/sample - loss: 0.6453 - accuracy: 0.9825 - val_loss: 0.5923 - val_accuracy: 1.0000 Epoch 522/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6345 - accuracy: 0.9825 - val_loss: 0.5895 - val_accuracy: 1.0000 Epoch 523/800 114/114 [==============================] - 0s 924us/sample - loss: 0.6448 - accuracy: 0.9737 - val_loss: 0.5939 - val_accuracy: 1.0000 Epoch 524/800 114/114 [==============================] - 0s 889us/sample - loss: 0.6151 - accuracy: 0.9825 - val_loss: 0.6062 - val_accuracy: 1.0000 Epoch 525/800 114/114 [==============================] - 0s 916us/sample - loss: 0.6451 - accuracy: 0.9649 - val_loss: 0.6143 - val_accuracy: 0.9524 Epoch 526/800 114/114 [==============================] - 0s 907us/sample - loss: 0.6364 - accuracy: 0.9825 - val_loss: 0.6088 - val_accuracy: 1.0000 Epoch 527/800 114/114 [==============================] - 0s 855us/sample - loss: 0.6336 - accuracy: 0.9737 - val_loss: 0.6105 - val_accuracy: 0.9524 Epoch 528/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6245 - accuracy: 0.9737 - val_loss: 0.6294 - val_accuracy: 0.9524 Epoch 529/800 114/114 [==============================] - 0s 906us/sample - loss: 0.6209 - accuracy: 0.9825 - val_loss: 0.6441 - val_accuracy: 0.9524 Epoch 530/800 114/114 [==============================] - 0s 896us/sample - loss: 0.6687 - accuracy: 0.9386 - val_loss: 0.6254 - val_accuracy: 0.9524 Epoch 531/800 114/114 [==============================] - 0s 893us/sample - loss: 0.6015 - accuracy: 0.9912 - val_loss: 0.6061 - val_accuracy: 1.0000 Epoch 532/800 114/114 [==============================] - 0s 880us/sample - loss: 0.6361 - accuracy: 0.9912 - val_loss: 0.6004 - val_accuracy: 1.0000 Epoch 533/800 114/114 [==============================] - 0s 968us/sample - loss: 0.6058 - accuracy: 0.9912 - val_loss: 0.6037 - val_accuracy: 1.0000 Epoch 534/800 114/114 [==============================] - 0s 890us/sample - loss: 0.6417 - accuracy: 0.9825 - val_loss: 0.6136 - val_accuracy: 0.9524 Epoch 535/800 114/114 [==============================] - 0s 901us/sample - loss: 0.6443 - accuracy: 0.9737 - val_loss: 0.6393 - val_accuracy: 0.9524 Epoch 536/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6118 - accuracy: 0.9912 - val_loss: 0.6478 - val_accuracy: 0.9524 Epoch 537/800 114/114 [==============================] - 0s 966us/sample - loss: 0.6245 - accuracy: 0.9912 - val_loss: 0.6641 - val_accuracy: 0.9524 Epoch 538/800 114/114 [==============================] - 0s 872us/sample - loss: 0.6295 - accuracy: 0.9825 - val_loss: 0.6745 - val_accuracy: 0.9524 Epoch 539/800 114/114 [==============================] - 0s 919us/sample - loss: 0.6275 - accuracy: 0.9825 - val_loss: 0.6691 - val_accuracy: 0.9524 Epoch 540/800 114/114 [==============================] - 0s 873us/sample - loss: 0.6157 - accuracy: 0.9825 - val_loss: 0.6740 - val_accuracy: 0.9524 Epoch 541/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6418 - accuracy: 0.9649 - val_loss: 0.6572 - val_accuracy: 0.9524 Epoch 542/800 114/114 [==============================] - 0s 904us/sample - loss: 0.6180 - accuracy: 0.9912 - val_loss: 0.6384 - val_accuracy: 0.9524 Epoch 543/800 114/114 [==============================] - 0s 899us/sample - loss: 0.6082 - accuracy: 0.9825 - val_loss: 0.6345 - val_accuracy: 0.9524 Epoch 544/800 114/114 [==============================] - 0s 898us/sample - loss: 0.6328 - accuracy: 0.9649 - val_loss: 0.6619 - val_accuracy: 0.9524 Epoch 545/800 114/114 [==============================] - 0s 880us/sample - loss: 0.6155 - accuracy: 0.9825 - val_loss: 0.6756 - val_accuracy: 0.9524 Epoch 546/800 114/114 [==============================] - 0s 983us/sample - loss: 0.6276 - accuracy: 0.9825 - val_loss: 0.6804 - val_accuracy: 0.9524 Epoch 547/800 114/114 [==============================] - 0s 918us/sample - loss: 0.5980 - accuracy: 0.9912 - val_loss: 0.6596 - val_accuracy: 0.9524 Epoch 548/800 114/114 [==============================] - 0s 853us/sample - loss: 0.6150 - accuracy: 0.9912 - val_loss: 0.6583 - val_accuracy: 0.9524 Epoch 549/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6488 - accuracy: 0.9561 - val_loss: 0.7185 - val_accuracy: 0.9524 Epoch 550/800 114/114 [==============================] - 0s 948us/sample - loss: 0.6105 - accuracy: 0.9912 - val_loss: 0.7518 - val_accuracy: 0.9524 Epoch 551/800 114/114 [==============================] - 0s 890us/sample - loss: 0.6221 - accuracy: 0.9737 - val_loss: 0.7254 - val_accuracy: 0.9524 Epoch 552/800 114/114 [==============================] - 0s 872us/sample - loss: 0.6201 - accuracy: 0.9825 - val_loss: 0.6460 - val_accuracy: 0.9524 Epoch 553/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6135 - accuracy: 0.9912 - val_loss: 0.6079 - val_accuracy: 0.9524 Epoch 554/800 114/114 [==============================] - 0s 986us/sample - loss: 0.6126 - accuracy: 0.9825 - val_loss: 0.5999 - val_accuracy: 1.0000 Epoch 555/800 114/114 [==============================] - 0s 861us/sample - loss: 0.6320 - accuracy: 0.9825 - val_loss: 0.6032 - val_accuracy: 0.9524 Epoch 556/800 114/114 [==============================] - 0s 905us/sample - loss: 0.6069 - accuracy: 0.9737 - val_loss: 0.6099 - val_accuracy: 0.9524 Epoch 557/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6248 - accuracy: 0.9825 - val_loss: 0.6185 - val_accuracy: 0.9524 Epoch 558/800 114/114 [==============================] - 0s 876us/sample - loss: 0.6066 - accuracy: 0.9912 - val_loss: 0.6336 - val_accuracy: 0.9524 Epoch 559/800 114/114 [==============================] - 0s 867us/sample - loss: 0.6270 - accuracy: 0.9825 - val_loss: 0.6747 - val_accuracy: 0.9524 Epoch 560/800 114/114 [==============================] - 0s 929us/sample - loss: 0.6071 - accuracy: 0.9825 - val_loss: 0.6974 - val_accuracy: 0.9524 Epoch 561/800 114/114 [==============================] - 0s 973us/sample - loss: 0.6275 - accuracy: 0.9912 - val_loss: 0.6804 - val_accuracy: 0.9524 Epoch 562/800 114/114 [==============================] - 0s 867us/sample - loss: 0.6214 - accuracy: 0.9737 - val_loss: 0.6466 - val_accuracy: 0.9524 Epoch 563/800 114/114 [==============================] - 0s 923us/sample - loss: 0.5937 - accuracy: 0.9912 - val_loss: 0.6238 - val_accuracy: 0.9524 Epoch 564/800 114/114 [==============================] - 0s 868us/sample - loss: 0.6369 - accuracy: 0.9825 - val_loss: 0.6227 - val_accuracy: 0.9524 Epoch 565/800 114/114 [==============================] - 0s 867us/sample - loss: 0.6115 - accuracy: 0.9825 - val_loss: 0.6233 - val_accuracy: 0.9524 Epoch 566/800 114/114 [==============================] - 0s 939us/sample - loss: 0.6351 - accuracy: 0.9649 - val_loss: 0.6233 - val_accuracy: 0.9524 Epoch 567/800 114/114 [==============================] - 0s 901us/sample - loss: 0.6073 - accuracy: 0.9825 - val_loss: 0.6128 - val_accuracy: 0.9524 Epoch 568/800 114/114 [==============================] - 0s 919us/sample - loss: 0.6539 - accuracy: 0.9649 - val_loss: 0.6075 - val_accuracy: 0.9524 Epoch 569/800 114/114 [==============================] - 0s 860us/sample - loss: 0.6025 - accuracy: 0.9912 - val_loss: 0.6223 - val_accuracy: 0.9524 Epoch 570/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6132 - accuracy: 0.9737 - val_loss: 0.6528 - val_accuracy: 0.9524 Epoch 571/800 114/114 [==============================] - 0s 926us/sample - loss: 0.5990 - accuracy: 0.9825 - val_loss: 0.7363 - val_accuracy: 0.9524 Epoch 572/800 114/114 [==============================] - 0s 887us/sample - loss: 0.6083 - accuracy: 0.9825 - val_loss: 0.7755 - val_accuracy: 0.9524 Epoch 573/800 114/114 [==============================] - 0s 906us/sample - loss: 0.6260 - accuracy: 0.9737 - val_loss: 0.6972 - val_accuracy: 0.9524 Epoch 574/800 114/114 [==============================] - 0s 941us/sample - loss: 0.6070 - accuracy: 0.9912 - val_loss: 0.6383 - val_accuracy: 0.9524 Epoch 575/800 114/114 [==============================] - 0s 914us/sample - loss: 0.6073 - accuracy: 0.9912 - val_loss: 0.6153 - val_accuracy: 0.9524 Epoch 576/800 114/114 [==============================] - 0s 903us/sample - loss: 0.6097 - accuracy: 0.9912 - val_loss: 0.6044 - val_accuracy: 0.9524 Epoch 577/800 114/114 [==============================] - 0s 883us/sample - loss: 0.6217 - accuracy: 0.9737 - val_loss: 0.6005 - val_accuracy: 0.9524 Epoch 578/800 114/114 [==============================] - 0s 856us/sample - loss: 0.6207 - accuracy: 0.9825 - val_loss: 0.6168 - val_accuracy: 0.9524 Epoch 579/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6134 - accuracy: 0.9737 - val_loss: 0.6256 - val_accuracy: 0.9524 Epoch 580/800 114/114 [==============================] - 0s 902us/sample - loss: 0.6369 - accuracy: 0.9737 - val_loss: 0.5981 - val_accuracy: 0.9524 Epoch 581/800 114/114 [==============================] - 0s 925us/sample - loss: 0.6036 - accuracy: 0.9825 - val_loss: 0.5849 - val_accuracy: 1.0000 Epoch 582/800 114/114 [==============================] - 0s 903us/sample - loss: 0.6065 - accuracy: 0.9825 - val_loss: 0.5796 - val_accuracy: 1.0000 Epoch 583/800 114/114 [==============================] - 0s 860us/sample - loss: 0.5949 - accuracy: 0.9912 - val_loss: 0.5785 - val_accuracy: 1.0000 Epoch 584/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6025 - accuracy: 0.9825 - val_loss: 0.5752 - val_accuracy: 1.0000 Epoch 585/800 114/114 [==============================] - 0s 881us/sample - loss: 0.6075 - accuracy: 0.9912 - val_loss: 0.5777 - val_accuracy: 1.0000 Epoch 586/800 114/114 [==============================] - 0s 900us/sample - loss: 0.6127 - accuracy: 0.9825 - val_loss: 0.5835 - val_accuracy: 1.0000 Epoch 587/800 114/114 [==============================] - 0s 909us/sample - loss: 0.6042 - accuracy: 0.9825 - val_loss: 0.5899 - val_accuracy: 1.0000 Epoch 588/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6048 - accuracy: 0.9737 - val_loss: 0.5967 - val_accuracy: 0.9524 Epoch 589/800 114/114 [==============================] - 0s 882us/sample - loss: 0.5928 - accuracy: 0.9825 - val_loss: 0.6126 - val_accuracy: 0.9524 Epoch 590/800 114/114 [==============================] - 0s 902us/sample - loss: 0.5978 - accuracy: 0.9737 - val_loss: 0.6245 - val_accuracy: 0.9524 Epoch 591/800 114/114 [==============================] - 0s 875us/sample - loss: 0.6066 - accuracy: 0.9825 - val_loss: 0.6099 - val_accuracy: 0.9524 Epoch 592/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5921 - accuracy: 0.9912 - val_loss: 0.5913 - val_accuracy: 1.0000 Epoch 593/800 114/114 [==============================] - 0s 875us/sample - loss: 0.5847 - accuracy: 0.9912 - val_loss: 0.5860 - val_accuracy: 1.0000 Epoch 594/800 114/114 [==============================] - 0s 920us/sample - loss: 0.6148 - accuracy: 0.9825 - val_loss: 0.5903 - val_accuracy: 1.0000 Epoch 595/800 114/114 [==============================] - 0s 891us/sample - loss: 0.6090 - accuracy: 0.9825 - val_loss: 0.5906 - val_accuracy: 1.0000 Epoch 596/800 114/114 [==============================] - 0s 891us/sample - loss: 0.6462 - accuracy: 0.9737 - val_loss: 0.5926 - val_accuracy: 0.9524 Epoch 597/800 114/114 [==============================] - 0s 848us/sample - loss: 0.6021 - accuracy: 0.9825 - val_loss: 0.5821 - val_accuracy: 1.0000 Epoch 598/800 114/114 [==============================] - 0s 944us/sample - loss: 0.5871 - accuracy: 0.9912 - val_loss: 0.5811 - val_accuracy: 1.0000 Epoch 599/800 114/114 [==============================] - 0s 899us/sample - loss: 0.6155 - accuracy: 0.9912 - val_loss: 0.5814 - val_accuracy: 1.0000 Epoch 600/800 114/114 [==============================] - 0s 900us/sample - loss: 0.5855 - accuracy: 0.9912 - val_loss: 0.5820 - val_accuracy: 1.0000 Epoch 601/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5933 - accuracy: 0.9912 - val_loss: 0.5900 - val_accuracy: 1.0000 Epoch 602/800 114/114 [==============================] - 0s 936us/sample - loss: 0.5956 - accuracy: 0.9825 - val_loss: 0.5881 - val_accuracy: 1.0000 Epoch 603/800 114/114 [==============================] - 0s 873us/sample - loss: 0.6084 - accuracy: 0.9737 - val_loss: 0.5781 - val_accuracy: 1.0000 Epoch 604/800 114/114 [==============================] - 0s 919us/sample - loss: 0.5938 - accuracy: 0.9825 - val_loss: 0.5713 - val_accuracy: 1.0000 Epoch 605/800 114/114 [==============================] - 0s 863us/sample - loss: 0.6171 - accuracy: 0.9737 - val_loss: 0.5713 - val_accuracy: 1.0000 Epoch 606/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5980 - accuracy: 0.9912 - val_loss: 0.5728 - val_accuracy: 1.0000 Epoch 607/800 114/114 [==============================] - 0s 906us/sample - loss: 0.5956 - accuracy: 0.9912 - val_loss: 0.5790 - val_accuracy: 1.0000 Epoch 608/800 114/114 [==============================] - 0s 901us/sample - loss: 0.5659 - accuracy: 1.0000 - val_loss: 0.5912 - val_accuracy: 0.9524 Epoch 609/800 114/114 [==============================] - 0s 902us/sample - loss: 0.6452 - accuracy: 0.9737 - val_loss: 0.6200 - val_accuracy: 0.9524 Epoch 610/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5937 - accuracy: 0.9737 - val_loss: 0.6200 - val_accuracy: 0.9524 Epoch 611/800 114/114 [==============================] - 0s 938us/sample - loss: 0.5846 - accuracy: 0.9912 - val_loss: 0.6302 - val_accuracy: 0.9524 Epoch 612/800 114/114 [==============================] - 0s 914us/sample - loss: 0.5839 - accuracy: 0.9912 - val_loss: 0.6234 - val_accuracy: 0.9524 Epoch 613/800 114/114 [==============================] - 0s 877us/sample - loss: 0.5977 - accuracy: 0.9825 - val_loss: 0.6224 - val_accuracy: 0.9524 Epoch 614/800 114/114 [==============================] - 0s 852us/sample - loss: 0.5826 - accuracy: 0.9912 - val_loss: 0.6239 - val_accuracy: 0.9524 Epoch 615/800 114/114 [==============================] - 0s 945us/sample - loss: 0.5875 - accuracy: 0.9825 - val_loss: 0.6260 - val_accuracy: 0.9524 Epoch 616/800 114/114 [==============================] - 0s 896us/sample - loss: 0.5922 - accuracy: 0.9912 - val_loss: 0.6331 - val_accuracy: 0.9524 Epoch 617/800 114/114 [==============================] - 0s 893us/sample - loss: 0.6187 - accuracy: 0.9649 - val_loss: 0.6267 - val_accuracy: 0.9524 Epoch 618/800 114/114 [==============================] - 0s 904us/sample - loss: 0.6123 - accuracy: 0.9825 - val_loss: 0.5986 - val_accuracy: 0.9524 Epoch 619/800 114/114 [==============================] - 0s 831us/sample - loss: 0.6108 - accuracy: 0.9649 - val_loss: 0.5999 - val_accuracy: 0.9524 Epoch 620/800 114/114 [==============================] - 0s 946us/sample - loss: 0.6022 - accuracy: 0.9825 - val_loss: 0.6051 - val_accuracy: 0.9524 Epoch 621/800 114/114 [==============================] - 0s 929us/sample - loss: 0.5857 - accuracy: 0.9825 - val_loss: 0.5971 - val_accuracy: 0.9524 Epoch 622/800 114/114 [==============================] - 0s 880us/sample - loss: 0.6006 - accuracy: 0.9825 - val_loss: 0.5794 - val_accuracy: 1.0000 Epoch 623/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5776 - accuracy: 0.9912 - val_loss: 0.5790 - val_accuracy: 1.0000 Epoch 624/800 114/114 [==============================] - 0s 956us/sample - loss: 0.5841 - accuracy: 0.9825 - val_loss: 0.5873 - val_accuracy: 0.9524 Epoch 625/800 114/114 [==============================] - 0s 878us/sample - loss: 0.6422 - accuracy: 0.9737 - val_loss: 0.5872 - val_accuracy: 0.9524 Epoch 626/800 114/114 [==============================] - 0s 901us/sample - loss: 0.6249 - accuracy: 0.9737 - val_loss: 0.6034 - val_accuracy: 0.9524 Epoch 627/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6294 - accuracy: 0.9825 - val_loss: 0.6176 - val_accuracy: 0.9524 Epoch 628/800 114/114 [==============================] - 0s 943us/sample - loss: 0.5936 - accuracy: 0.9825 - val_loss: 0.6134 - val_accuracy: 0.9524 Epoch 629/800 114/114 [==============================] - 0s 899us/sample - loss: 0.6003 - accuracy: 0.9825 - val_loss: 0.6107 - val_accuracy: 0.9524 Epoch 630/800 114/114 [==============================] - 0s 850us/sample - loss: 0.5826 - accuracy: 0.9912 - val_loss: 0.6077 - val_accuracy: 0.9524 Epoch 631/800 114/114 [==============================] - 0s 941us/sample - loss: 0.6262 - accuracy: 0.9737 - val_loss: 0.5957 - val_accuracy: 0.9524 Epoch 632/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5939 - accuracy: 0.9912 - val_loss: 0.6007 - val_accuracy: 0.9524 Epoch 633/800 114/114 [==============================] - 0s 932us/sample - loss: 0.5961 - accuracy: 0.9825 - val_loss: 0.6047 - val_accuracy: 0.9524 Epoch 634/800 114/114 [==============================] - 0s 898us/sample - loss: 0.6066 - accuracy: 0.9825 - val_loss: 0.6285 - val_accuracy: 0.9524 Epoch 635/800 114/114 [==============================] - 0s 890us/sample - loss: 0.5928 - accuracy: 0.9825 - val_loss: 0.6593 - val_accuracy: 0.9524 Epoch 636/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5888 - accuracy: 0.9825 - val_loss: 0.6502 - val_accuracy: 0.9524 Epoch 637/800 114/114 [==============================] - 0s 976us/sample - loss: 0.6000 - accuracy: 0.9825 - val_loss: 0.6390 - val_accuracy: 0.9524 Epoch 638/800 114/114 [==============================] - 0s 872us/sample - loss: 0.6060 - accuracy: 0.9825 - val_loss: 0.6415 - val_accuracy: 0.9524 Epoch 639/800 114/114 [==============================] - 0s 912us/sample - loss: 0.5870 - accuracy: 0.9825 - val_loss: 0.6444 - val_accuracy: 0.9524 Epoch 640/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5873 - accuracy: 0.9825 - val_loss: 0.6332 - val_accuracy: 0.9524 Epoch 641/800 114/114 [==============================] - 0s 916us/sample - loss: 0.5925 - accuracy: 0.9912 - val_loss: 0.6161 - val_accuracy: 0.9524 Epoch 642/800 114/114 [==============================] - 0s 906us/sample - loss: 0.5843 - accuracy: 0.9825 - val_loss: 0.6078 - val_accuracy: 0.9524 Epoch 643/800 114/114 [==============================] - 0s 874us/sample - loss: 0.6387 - accuracy: 0.9474 - val_loss: 0.5969 - val_accuracy: 0.9524 Epoch 644/800 114/114 [==============================] - 0s 907us/sample - loss: 0.5773 - accuracy: 0.9912 - val_loss: 0.5861 - val_accuracy: 0.9524 Epoch 645/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5905 - accuracy: 0.9825 - val_loss: 0.5896 - val_accuracy: 0.9524 Epoch 646/800 114/114 [==============================] - 0s 870us/sample - loss: 0.5894 - accuracy: 0.9825 - val_loss: 0.5939 - val_accuracy: 0.9524 Epoch 647/800 114/114 [==============================] - 0s 920us/sample - loss: 0.5898 - accuracy: 0.9912 - val_loss: 0.6019 - val_accuracy: 0.9524 Epoch 648/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5904 - accuracy: 0.9825 - val_loss: 0.6093 - val_accuracy: 0.9524 Epoch 649/800 114/114 [==============================] - 0s 955us/sample - loss: 0.6022 - accuracy: 0.9825 - val_loss: 0.6466 - val_accuracy: 0.9524 Epoch 650/800 114/114 [==============================] - 0s 893us/sample - loss: 0.6128 - accuracy: 0.9737 - val_loss: 0.6592 - val_accuracy: 0.9524 Epoch 651/800 114/114 [==============================] - 0s 906us/sample - loss: 0.5765 - accuracy: 0.9737 - val_loss: 0.6465 - val_accuracy: 0.9524 Epoch 652/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5889 - accuracy: 0.9825 - val_loss: 0.5919 - val_accuracy: 0.9524 Epoch 653/800 114/114 [==============================] - 0s 871us/sample - loss: 0.5880 - accuracy: 0.9737 - val_loss: 0.5685 - val_accuracy: 1.0000 Epoch 654/800 114/114 [==============================] - 0s 921us/sample - loss: 0.5726 - accuracy: 0.9912 - val_loss: 0.5642 - val_accuracy: 1.0000 Epoch 655/800 114/114 [==============================] - 0s 859us/sample - loss: 0.6224 - accuracy: 0.9561 - val_loss: 0.5693 - val_accuracy: 1.0000 Epoch 656/800 114/114 [==============================] - 0s 905us/sample - loss: 0.5776 - accuracy: 0.9825 - val_loss: 0.5775 - val_accuracy: 0.9524 Epoch 657/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5836 - accuracy: 0.9737 - val_loss: 0.5660 - val_accuracy: 1.0000 Epoch 658/800 114/114 [==============================] - 0s 904us/sample - loss: 0.5794 - accuracy: 0.9912 - val_loss: 0.5598 - val_accuracy: 1.0000 Epoch 659/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5759 - accuracy: 0.9825 - val_loss: 0.5632 - val_accuracy: 1.0000 Epoch 660/800 114/114 [==============================] - 0s 964us/sample - loss: 0.5883 - accuracy: 0.9825 - val_loss: 0.5663 - val_accuracy: 1.0000 Epoch 661/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5795 - accuracy: 0.9912 - val_loss: 0.5727 - val_accuracy: 1.0000 Epoch 662/800 114/114 [==============================] - 0s 930us/sample - loss: 0.5751 - accuracy: 0.9825 - val_loss: 0.5758 - val_accuracy: 0.9524 Epoch 663/800 114/114 [==============================] - 0s 909us/sample - loss: 0.5905 - accuracy: 0.9912 - val_loss: 0.5710 - val_accuracy: 1.0000 Epoch 664/800 114/114 [==============================] - 0s 893us/sample - loss: 0.5909 - accuracy: 0.9825 - val_loss: 0.5636 - val_accuracy: 1.0000 Epoch 665/800 114/114 [==============================] - 0s 889us/sample - loss: 0.5944 - accuracy: 0.9737 - val_loss: 0.5572 - val_accuracy: 1.0000 Epoch 666/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5965 - accuracy: 0.9649 - val_loss: 0.5570 - val_accuracy: 1.0000 Epoch 667/800 114/114 [==============================] - 0s 917us/sample - loss: 0.5788 - accuracy: 0.9825 - val_loss: 0.5604 - val_accuracy: 1.0000 Epoch 668/800 114/114 [==============================] - 0s 902us/sample - loss: 0.5771 - accuracy: 0.9825 - val_loss: 0.5670 - val_accuracy: 1.0000 Epoch 669/800 114/114 [==============================] - 0s 885us/sample - loss: 0.5744 - accuracy: 0.9912 - val_loss: 0.5804 - val_accuracy: 0.9524 Epoch 670/800 114/114 [==============================] - 0s 879us/sample - loss: 0.5970 - accuracy: 0.9737 - val_loss: 0.5850 - val_accuracy: 0.9524 Epoch 671/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5742 - accuracy: 0.9912 - val_loss: 0.5731 - val_accuracy: 1.0000 Epoch 672/800 114/114 [==============================] - 0s 901us/sample - loss: 0.5836 - accuracy: 0.9825 - val_loss: 0.5646 - val_accuracy: 1.0000 Epoch 673/800 114/114 [==============================] - 0s 891us/sample - loss: 0.5897 - accuracy: 0.9825 - val_loss: 0.5600 - val_accuracy: 1.0000 Epoch 674/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.6142 - accuracy: 0.9474 - val_loss: 0.5543 - val_accuracy: 1.0000 Epoch 675/800 114/114 [==============================] - 0s 936us/sample - loss: 0.6113 - accuracy: 0.9737 - val_loss: 0.5559 - val_accuracy: 1.0000 Epoch 676/800 114/114 [==============================] - 0s 890us/sample - loss: 0.5730 - accuracy: 0.9912 - val_loss: 0.5593 - val_accuracy: 1.0000 Epoch 677/800 114/114 [==============================] - 0s 895us/sample - loss: 0.5668 - accuracy: 0.9912 - val_loss: 0.5606 - val_accuracy: 1.0000 Epoch 678/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5639 - accuracy: 0.9912 - val_loss: 0.5631 - val_accuracy: 1.0000 Epoch 679/800 114/114 [==============================] - 0s 965us/sample - loss: 0.5659 - accuracy: 0.9825 - val_loss: 0.5583 - val_accuracy: 1.0000 Epoch 680/800 114/114 [==============================] - 0s 857us/sample - loss: 0.5780 - accuracy: 0.9825 - val_loss: 0.5524 - val_accuracy: 1.0000 Epoch 681/800 114/114 [==============================] - 0s 862us/sample - loss: 0.5699 - accuracy: 0.9825 - val_loss: 0.5495 - val_accuracy: 1.0000 Epoch 682/800 114/114 [==============================] - 0s 887us/sample - loss: 0.5736 - accuracy: 0.9825 - val_loss: 0.5593 - val_accuracy: 1.0000 Epoch 683/800 114/114 [==============================] - 0s 962us/sample - loss: 0.6086 - accuracy: 0.9737 - val_loss: 0.5938 - val_accuracy: 0.9524 Epoch 684/800 114/114 [==============================] - 0s 873us/sample - loss: 0.5936 - accuracy: 0.9825 - val_loss: 0.6576 - val_accuracy: 0.9524 Epoch 685/800 114/114 [==============================] - 0s 915us/sample - loss: 0.5923 - accuracy: 0.9825 - val_loss: 0.6650 - val_accuracy: 0.9524 Epoch 686/800 114/114 [==============================] - 0s 885us/sample - loss: 0.6368 - accuracy: 0.9737 - val_loss: 0.5917 - val_accuracy: 0.9524 Epoch 687/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5679 - accuracy: 0.9912 - val_loss: 0.5707 - val_accuracy: 0.9524 Epoch 688/800 114/114 [==============================] - 0s 912us/sample - loss: 0.5803 - accuracy: 0.9825 - val_loss: 0.5752 - val_accuracy: 0.9524 Epoch 689/800 114/114 [==============================] - 0s 889us/sample - loss: 0.5760 - accuracy: 0.9737 - val_loss: 0.5733 - val_accuracy: 0.9524 Epoch 690/800 114/114 [==============================] - 0s 889us/sample - loss: 0.6069 - accuracy: 0.9737 - val_loss: 0.5729 - val_accuracy: 0.9524 Epoch 691/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5586 - accuracy: 0.9912 - val_loss: 0.5953 - val_accuracy: 0.9524 Epoch 692/800 114/114 [==============================] - 0s 928us/sample - loss: 0.6031 - accuracy: 0.9737 - val_loss: 0.6392 - val_accuracy: 0.9524 Epoch 693/800 114/114 [==============================] - 0s 898us/sample - loss: 0.6047 - accuracy: 0.9737 - val_loss: 0.6669 - val_accuracy: 0.9524 Epoch 694/800 114/114 [==============================] - 0s 874us/sample - loss: 0.5816 - accuracy: 0.9825 - val_loss: 0.7000 - val_accuracy: 0.9524 Epoch 695/800 114/114 [==============================] - 0s 893us/sample - loss: 0.5740 - accuracy: 0.9825 - val_loss: 0.6878 - val_accuracy: 0.9524 Epoch 696/800 114/114 [==============================] - 0s 878us/sample - loss: 0.5759 - accuracy: 0.9737 - val_loss: 0.6408 - val_accuracy: 0.9524 Epoch 697/800 114/114 [==============================] - 0s 914us/sample - loss: 0.5817 - accuracy: 0.9912 - val_loss: 0.6075 - val_accuracy: 0.9524 Epoch 698/800 114/114 [==============================] - 0s 952us/sample - loss: 0.6012 - accuracy: 0.9825 - val_loss: 0.5894 - val_accuracy: 0.9524 Epoch 699/800 114/114 [==============================] - 0s 866us/sample - loss: 0.5742 - accuracy: 0.9912 - val_loss: 0.5838 - val_accuracy: 0.9524 Epoch 700/800 114/114 [==============================] - 0s 902us/sample - loss: 0.5685 - accuracy: 0.9825 - val_loss: 0.5878 - val_accuracy: 0.9524 Epoch 701/800 114/114 [==============================] - 0s 1ms/sample - loss: 0.5604 - accuracy: 0.9825 - val_loss: 0.6012 - val_accuracy: 0.9524 Epoch 702/800 114/114 [==============================] - 0s 851us/sample - loss: 0.5845 - accuracy: 0.9649 - val_loss: 0.6124 - val_accuracy: 0.9524 Epoch 703/800 114/114 [==============================] - 0s 903us/sample - loss: 0.5891 - accuracy: 0.9825 - val_loss: 0.6004 - val_accuracy: 0.9524 Epoch 704/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5630 - accuracy: 0.9912 - val_loss: 0.5967 - val_accuracy: 0.9524 Epoch 705/800 114/114 [==============================] - 0s 972us/sample - loss: 0.5752 - accuracy: 0.9825 - val_loss: 0.5780 - val_accuracy: 0.9524 Epoch 706/800 114/114 [==============================] - 0s 885us/sample - loss: 0.5679 - accuracy: 0.9825 - val_loss: 0.5738 - val_accuracy: 0.9524 Epoch 707/800 114/114 [==============================] - 0s 881us/sample - loss: 0.5888 - accuracy: 0.9737 - val_loss: 0.5728 - val_accuracy: 0.9524 Epoch 708/800 114/114 [==============================] - 0s 860us/sample - loss: 0.5751 - accuracy: 0.9825 - val_loss: 0.5691 - val_accuracy: 0.9524 Epoch 709/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5718 - accuracy: 0.9825 - val_loss: 0.5698 - val_accuracy: 0.9524 Epoch 710/800 114/114 [==============================] - 0s 911us/sample - loss: 0.5721 - accuracy: 0.9825 - val_loss: 0.6028 - val_accuracy: 0.9524 Epoch 711/800 114/114 [==============================] - 0s 903us/sample - loss: 0.5709 - accuracy: 0.9825 - val_loss: 0.6233 - val_accuracy: 0.9524 Epoch 712/800 114/114 [==============================] - 0s 896us/sample - loss: 0.5586 - accuracy: 0.9825 - val_loss: 0.6242 - val_accuracy: 0.9524 Epoch 713/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5637 - accuracy: 0.9825 - val_loss: 0.6148 - val_accuracy: 0.9524 Epoch 714/800 114/114 [==============================] - 0s 955us/sample - loss: 0.5988 - accuracy: 0.9737 - val_loss: 0.5920 - val_accuracy: 0.9524 Epoch 715/800 114/114 [==============================] - 0s 915us/sample - loss: 0.5586 - accuracy: 0.9912 - val_loss: 0.5893 - val_accuracy: 0.9524 Epoch 716/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5786 - accuracy: 0.9737 - val_loss: 0.6000 - val_accuracy: 0.9524 Epoch 717/800 114/114 [==============================] - 0s 908us/sample - loss: 0.5769 - accuracy: 0.9825 - val_loss: 0.6059 - val_accuracy: 0.9524 Epoch 718/800 114/114 [==============================] - 0s 923us/sample - loss: 0.5755 - accuracy: 0.9825 - val_loss: 0.5851 - val_accuracy: 0.9524 Epoch 719/800 114/114 [==============================] - 0s 872us/sample - loss: 0.5670 - accuracy: 0.9912 - val_loss: 0.5673 - val_accuracy: 0.9524 Epoch 720/800 114/114 [==============================] - 0s 936us/sample - loss: 0.5819 - accuracy: 0.9825 - val_loss: 0.5632 - val_accuracy: 0.9524 Epoch 721/800 114/114 [==============================] - 0s 908us/sample - loss: 0.5589 - accuracy: 0.9825 - val_loss: 0.5626 - val_accuracy: 0.9524 Epoch 722/800 114/114 [==============================] - 0s 911us/sample - loss: 0.5633 - accuracy: 0.9825 - val_loss: 0.5628 - val_accuracy: 0.9524 Epoch 723/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5705 - accuracy: 0.9912 - val_loss: 0.5703 - val_accuracy: 0.9524 Epoch 724/800 114/114 [==============================] - 0s 882us/sample - loss: 0.5764 - accuracy: 0.9825 - val_loss: 0.5886 - val_accuracy: 0.9524 Epoch 725/800 114/114 [==============================] - 0s 959us/sample - loss: 0.5638 - accuracy: 0.9825 - val_loss: 0.6146 - val_accuracy: 0.9524 Epoch 726/800 114/114 [==============================] - 0s 886us/sample - loss: 0.5614 - accuracy: 0.9825 - val_loss: 0.6315 - val_accuracy: 0.9524 Epoch 727/800 114/114 [==============================] - 0s 908us/sample - loss: 0.5623 - accuracy: 0.9912 - val_loss: 0.6209 - val_accuracy: 0.9524 Epoch 728/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5911 - accuracy: 0.9737 - val_loss: 0.6137 - val_accuracy: 0.9524 Epoch 729/800 114/114 [==============================] - 0s 889us/sample - loss: 0.5516 - accuracy: 0.9912 - val_loss: 0.5742 - val_accuracy: 0.9524 Epoch 730/800 114/114 [==============================] - 0s 911us/sample - loss: 0.5770 - accuracy: 0.9825 - val_loss: 0.5709 - val_accuracy: 0.9524 Epoch 731/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5559 - accuracy: 0.9912 - val_loss: 0.5758 - val_accuracy: 0.9524 Epoch 732/800 114/114 [==============================] - 0s 930us/sample - loss: 0.6174 - accuracy: 0.9561 - val_loss: 0.5699 - val_accuracy: 0.9524 Epoch 733/800 114/114 [==============================] - 0s 891us/sample - loss: 0.5663 - accuracy: 0.9825 - val_loss: 0.5736 - val_accuracy: 0.9524 Epoch 734/800 114/114 [==============================] - 0s 868us/sample - loss: 0.5674 - accuracy: 0.9825 - val_loss: 0.5722 - val_accuracy: 0.9524 Epoch 735/800 114/114 [==============================] - 0s 893us/sample - loss: 0.5508 - accuracy: 0.9912 - val_loss: 0.5608 - val_accuracy: 0.9524 Epoch 736/800 114/114 [==============================] - 0s 896us/sample - loss: 0.5846 - accuracy: 0.9737 - val_loss: 0.5640 - val_accuracy: 0.9524 Epoch 737/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5708 - accuracy: 0.9737 - val_loss: 0.5438 - val_accuracy: 1.0000 Epoch 738/800 114/114 [==============================] - 0s 889us/sample - loss: 0.5796 - accuracy: 0.9825 - val_loss: 0.5369 - val_accuracy: 1.0000 Epoch 739/800 114/114 [==============================] - 0s 897us/sample - loss: 0.5809 - accuracy: 0.9649 - val_loss: 0.5411 - val_accuracy: 1.0000 Epoch 740/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5481 - accuracy: 1.0000 - val_loss: 0.5406 - val_accuracy: 1.0000 Epoch 741/800 114/114 [==============================] - 0s 975us/sample - loss: 0.5406 - accuracy: 0.9912 - val_loss: 0.5400 - val_accuracy: 1.0000 Epoch 742/800 114/114 [==============================] - 0s 872us/sample - loss: 0.5666 - accuracy: 0.9737 - val_loss: 0.5396 - val_accuracy: 1.0000 Epoch 743/800 114/114 [==============================] - 0s 903us/sample - loss: 0.5506 - accuracy: 0.9912 - val_loss: 0.5449 - val_accuracy: 1.0000 Epoch 744/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5543 - accuracy: 0.9825 - val_loss: 0.5643 - val_accuracy: 0.9524 Epoch 745/800 114/114 [==============================] - 0s 926us/sample - loss: 0.5515 - accuracy: 0.9825 - val_loss: 0.5640 - val_accuracy: 0.9524 Epoch 746/800 114/114 [==============================] - 0s 919us/sample - loss: 0.5388 - accuracy: 0.9912 - val_loss: 0.5500 - val_accuracy: 1.0000 Epoch 747/800 114/114 [==============================] - 0s 872us/sample - loss: 0.5676 - accuracy: 0.9825 - val_loss: 0.5442 - val_accuracy: 1.0000 Epoch 748/800 114/114 [==============================] - 0s 921us/sample - loss: 0.6362 - accuracy: 0.9649 - val_loss: 0.5374 - val_accuracy: 1.0000 Epoch 749/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5554 - accuracy: 0.9912 - val_loss: 0.5369 - val_accuracy: 1.0000 Epoch 750/800 114/114 [==============================] - 0s 872us/sample - loss: 0.5692 - accuracy: 0.9912 - val_loss: 0.5410 - val_accuracy: 1.0000 Epoch 751/800 114/114 [==============================] - 0s 928us/sample - loss: 0.5605 - accuracy: 0.9737 - val_loss: 0.5502 - val_accuracy: 1.0000 Epoch 752/800 114/114 [==============================] - 0s 869us/sample - loss: 0.5450 - accuracy: 0.9912 - val_loss: 0.5517 - val_accuracy: 1.0000 Epoch 753/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5499 - accuracy: 0.9912 - val_loss: 0.5511 - val_accuracy: 1.0000 Epoch 754/800 114/114 [==============================] - 0s 912us/sample - loss: 0.5731 - accuracy: 0.9825 - val_loss: 0.5706 - val_accuracy: 0.9524 Epoch 755/800 114/114 [==============================] - 0s 869us/sample - loss: 0.5666 - accuracy: 0.9825 - val_loss: 0.6090 - val_accuracy: 0.9524 Epoch 756/800 114/114 [==============================] - 0s 874us/sample - loss: 0.5574 - accuracy: 0.9825 - val_loss: 0.6590 - val_accuracy: 0.9524 Epoch 757/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5553 - accuracy: 0.9825 - val_loss: 0.7050 - val_accuracy: 0.9524 Epoch 758/800 114/114 [==============================] - 0s 856us/sample - loss: 0.6079 - accuracy: 0.9737 - val_loss: 0.6257 - val_accuracy: 0.9524 Epoch 759/800 114/114 [==============================] - 0s 863us/sample - loss: 0.5554 - accuracy: 0.9912 - val_loss: 0.5559 - val_accuracy: 0.9524 Epoch 760/800 114/114 [==============================] - 0s 935us/sample - loss: 0.5508 - accuracy: 0.9912 - val_loss: 0.5409 - val_accuracy: 1.0000 Epoch 761/800 114/114 [==============================] - 0s 884us/sample - loss: 0.5672 - accuracy: 0.9649 - val_loss: 0.5448 - val_accuracy: 1.0000 Epoch 762/800 114/114 [==============================] - 0s 966us/sample - loss: 0.5635 - accuracy: 0.9825 - val_loss: 0.5842 - val_accuracy: 0.9524 Epoch 763/800 114/114 [==============================] - 0s 874us/sample - loss: 0.5432 - accuracy: 0.9825 - val_loss: 0.6298 - val_accuracy: 0.9524 Epoch 764/800 114/114 [==============================] - 0s 915us/sample - loss: 0.5607 - accuracy: 0.9737 - val_loss: 0.6604 - val_accuracy: 0.9524 Epoch 765/800 114/114 [==============================] - 0s 884us/sample - loss: 0.5844 - accuracy: 0.9737 - val_loss: 0.6355 - val_accuracy: 0.9524 Epoch 766/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5602 - accuracy: 0.9737 - val_loss: 0.6089 - val_accuracy: 0.9524 Epoch 767/800 114/114 [==============================] - 0s 923us/sample - loss: 0.5547 - accuracy: 0.9912 - val_loss: 0.5680 - val_accuracy: 0.9524 Epoch 768/800 114/114 [==============================] - 0s 882us/sample - loss: 0.5768 - accuracy: 0.9825 - val_loss: 0.5704 - val_accuracy: 0.9524 Epoch 769/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5776 - accuracy: 0.9825 - val_loss: 0.5870 - val_accuracy: 0.9524 Epoch 770/800 114/114 [==============================] - 0s 890us/sample - loss: 0.5731 - accuracy: 0.9649 - val_loss: 0.6361 - val_accuracy: 0.9524 Epoch 771/800 114/114 [==============================] - 0s 902us/sample - loss: 0.5711 - accuracy: 0.9649 - val_loss: 0.6581 - val_accuracy: 0.9524 Epoch 772/800 114/114 [==============================] - 0s 906us/sample - loss: 0.5423 - accuracy: 0.9912 - val_loss: 0.6860 - val_accuracy: 0.9524 Epoch 773/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5509 - accuracy: 0.9912 - val_loss: 0.6997 - val_accuracy: 0.9524 Epoch 774/800 114/114 [==============================] - 0s 922us/sample - loss: 0.5659 - accuracy: 0.9649 - val_loss: 0.6512 - val_accuracy: 0.9524 Epoch 775/800 114/114 [==============================] - 0s 891us/sample - loss: 0.5608 - accuracy: 0.9825 - val_loss: 0.6452 - val_accuracy: 0.9524 Epoch 776/800 114/114 [==============================] - 0s 890us/sample - loss: 0.5617 - accuracy: 0.9912 - val_loss: 0.6028 - val_accuracy: 0.9524 Epoch 777/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5440 - accuracy: 0.9912 - val_loss: 0.5926 - val_accuracy: 0.9524 Epoch 778/800 114/114 [==============================] - 0s 955us/sample - loss: 0.5699 - accuracy: 0.9737 - val_loss: 0.6270 - val_accuracy: 0.9524 Epoch 779/800 114/114 [==============================] - 0s 915us/sample - loss: 0.5666 - accuracy: 0.9825 - val_loss: 0.6334 - val_accuracy: 0.9524 Epoch 780/800 114/114 [==============================] - 0s 896us/sample - loss: 0.5983 - accuracy: 0.9561 - val_loss: 0.6369 - val_accuracy: 0.9524 Epoch 781/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5655 - accuracy: 0.9737 - val_loss: 0.6401 - val_accuracy: 0.9524 Epoch 782/800 114/114 [==============================] - 0s 884us/sample - loss: 0.5833 - accuracy: 0.9737 - val_loss: 0.6321 - val_accuracy: 0.9524 Epoch 783/800 114/114 [==============================] - 0s 912us/sample - loss: 0.5868 - accuracy: 0.9737 - val_loss: 0.5835 - val_accuracy: 0.9524 Epoch 784/800 114/114 [==============================] - 0s 881us/sample - loss: 0.5533 - accuracy: 0.9825 - val_loss: 0.5579 - val_accuracy: 0.9524 Epoch 785/800 114/114 [==============================] - 0s 867us/sample - loss: 0.5467 - accuracy: 0.9912 - val_loss: 0.5515 - val_accuracy: 0.9524 Epoch 786/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5642 - accuracy: 0.9737 - val_loss: 0.5550 - val_accuracy: 0.9524 Epoch 787/800 114/114 [==============================] - 0s 927us/sample - loss: 0.5958 - accuracy: 0.9561 - val_loss: 0.5688 - val_accuracy: 0.9524 Epoch 788/800 114/114 [==============================] - 0s 921us/sample - loss: 0.5716 - accuracy: 0.9825 - val_loss: 0.5335 - val_accuracy: 1.0000 Epoch 789/800 114/114 [==============================] - 0s 862us/sample - loss: 0.5707 - accuracy: 0.9825 - val_loss: 0.5247 - val_accuracy: 1.0000 Epoch 790/800 114/114 [==============================] - 0s 937us/sample - loss: 0.5734 - accuracy: 0.9737 - val_loss: 0.5275 - val_accuracy: 1.0000 Epoch 791/800 114/114 [==============================] - 0s 940us/sample - loss: 0.5635 - accuracy: 0.9825 - val_loss: 0.5297 - val_accuracy: 1.0000 Epoch 792/800 114/114 [==============================] - 0s 869us/sample - loss: 0.5626 - accuracy: 0.9825 - val_loss: 0.5333 - val_accuracy: 1.0000 Epoch 793/800 114/114 [==============================] - 0s 967us/sample - loss: 0.5529 - accuracy: 0.9912 - val_loss: 0.5380 - val_accuracy: 1.0000 Epoch 794/800 114/114 [==============================] - 0s 904us/sample - loss: 0.5611 - accuracy: 0.9737 - val_loss: 0.5373 - val_accuracy: 1.0000 Epoch 795/800 114/114 [==============================] - 0s 871us/sample - loss: 0.5496 - accuracy: 0.9912 - val_loss: 0.5373 - val_accuracy: 1.0000 Epoch 796/800 114/114 [==============================] - 0s 886us/sample - loss: 0.5495 - accuracy: 0.9825 - val_loss: 0.5430 - val_accuracy: 1.0000 Epoch 797/800 114/114 [==============================] - 0s 2ms/sample - loss: 0.5724 - accuracy: 0.9649 - val_loss: 0.5701 - val_accuracy: 0.9524 Epoch 798/800 114/114 [==============================] - 0s 892us/sample - loss: 0.5572 - accuracy: 0.9825 - val_loss: 0.6124 - val_accuracy: 0.9524 Epoch 799/800 114/114 [==============================] - 0s 959us/sample - loss: 0.5582 - accuracy: 0.9737 - val_loss: 0.6377 - val_accuracy: 0.9524 Epoch 800/800 114/114 [==============================] - 0s 870us/sample - loss: 0.5659 - accuracy: 0.9737 - val_loss: 0.6520 - val_accuracy: 0.9524
Plot the learning curves¶
Let's now plot the loss and accuracy for the training and validation sets.
#Run this cell to plot the new accuracy vs epoch graph
try:
plt.plot(reg_history.history['accuracy'])
plt.plot(reg_history.history['val_accuracy'])
except KeyError:
plt.plot(reg_history.history['acc'])
plt.plot(reg_history.history['val_acc'])
plt.title('Accuracy vs. epochs')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Training', 'Validation'], loc='lower right')
plt.show()
#Run this cell to plot the new loss vs epoch graph
plt.plot(reg_history.history['loss'])
plt.plot(reg_history.history['val_loss'])
plt.title('Loss vs. epochs')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Training', 'Validation'], loc='upper right')
plt.show()
We can see that the regularisation has helped to reduce the overfitting of the network. You will now incorporate callbacks into a new training run that implements early stopping and learning rate reduction on plateaux.
Fill in the function below so that:
- It creates an
EarlyStopping
callback object and aReduceLROnPlateau
callback object - The early stopping callback is used and monitors validation loss with the mode set to
"min"
and patience of 30. - The learning rate reduction on plateaux is used with a learning rate factor of 0.2 and a patience of 20.
#### GRADED CELL ####
# Complete the following function.
# Make sure to not change the function name or arguments.
def get_callbacks():
"""
This function should create and return a tuple (early_stopping, learning_rate_reduction) callbacks.
The callbacks should be instantiated according to the above requirements.
"""
early_stopping = tf.keras.callbacks.EarlyStopping(monitor="loss", mode="min", patience=30)
learning_rate_reduction = tf.keras.callbacks.ReduceLROnPlateau(factor=0.2, patience=20)
return early_stopping, learning_rate_reduction
Run the cell below to instantiate and train the regularised model with the callbacks.
call_model = get_regularised_model(train_data[0].shape, 0.3, 0.0001)
compile_model(call_model)
early_stopping, learning_rate_reduction = get_callbacks()
call_history = call_model.fit(train_data, train_targets, epochs=800, validation_split=0.15,
callbacks=[early_stopping, learning_rate_reduction], verbose=0)
learning_rate_reduction.patience
20
Finally, let's replot the accuracy and loss graphs for our new model.
try:
plt.plot(call_history.history['accuracy'])
plt.plot(call_history.history['val_accuracy'])
except KeyError:
plt.plot(call_history.history['acc'])
plt.plot(call_history.history['val_acc'])
plt.title('Accuracy vs. epochs')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Training', 'Validation'], loc='lower right')
plt.show()
plt.plot(call_history.history['loss'])
plt.plot(call_history.history['val_loss'])
plt.title('Loss vs. epochs')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Training', 'Validation'], loc='upper right')
plt.show()
# Evaluate the model on the test set
test_loss, test_acc = call_model.evaluate(test_data, test_targets, verbose=0)
print("Test loss: {:.3f}\nTest accuracy: {:.2f}%".format(test_loss, 100 * test_acc))
Congratulations for completing this programming assignment! In the next week of the course we will learn how to save and load pre-trained models.