博客主页 所有文章 标签 技术支持 关于我
img

sunsky

机器学习 / 深度学习 / 自然语言处理

Sunsky

个人站

所见即所得~


  • 博客主页
  • 所有文章
  • 标签
  • 技术支持
  • 关于我
  1. Win10安装Ubuntu子系统

    介绍在win10系统上安装Ubuntu子系统及GUI。安装Ubuntu子系统 以管理员身份打开PowerShell 为Linux启用win10子系统 dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart 启用虚拟机功能 dism.exe /online /enable-feature /featurename:Virtual...…

    2021-01-08
    ubuntu
    阅读全文 »

  2. Neural translation model

    <!DOCTYPE html>Capstone_Project Capstone Project¶Neural translation model¶Instructions¶In this notebook, you will create a neural network that translates from English to German. You will use concepts from ...…

    2020-05-20
    tensorflowCoursera
    阅读全文 »

  3. Tracking metrics in custom training loops

    <!DOCTYPE html>Tracking_metrics_in_custom_training_loops Tracking metrics in custom training loops¶In this reading you will learn how to track metrics such as accuracy within custom training loops.In [1]: im...…

    2020-04-15
    tensorflowCoursera
    阅读全文 »

  4. The build method, allowing flexible inputs for custom layers

    <!DOCTYPE html>The_build_method Flexible input shapes for custom layers¶In this reading you will learn how to use the build method to allow custom layers to work with flexible sized inputs.In [1]: import ten...…

    2020-04-15
    tensorflowCoursera
    阅读全文 »

  5. Residual network

    <!DOCTYPE html>Week_4_Programming_Assignment Programming Assignment¶Residual network¶Instructions¶In this notebook, you will use the model subclassing API together with custom layers to create a residual n...…

    2020-04-15
    tensorflowCoursera
    阅读全文 »

  6. Model subclassing and custom training loops

    <!DOCTYPE html>Coding_Tutorial In [32]: import tensorflow as tfprint(tf.__version__) 2.0.0Model subclassing and custom training loops¶Coding tutorials¶1. Model subclassing¶2. Custom layers&#...…

    2020-04-15
    tensorflowCoursera
    阅读全文 »

  7. Tokenizing text Data

    <!DOCTYPE html>Tokenising_Text_Data Tokenising Text Data¶In this notebook, you will learn how to tokenise text data using tf.keras.preprocessing.text.Tokenizer.In [1]: import tensorflow as tftf.__version__ ...…

    2020-04-05
    tensorflowCoursera
    阅读全文 »

  8. Stateful RNNs

    <!DOCTYPE html>Stateful_RNNs Stateful RNNs¶In this reading notebook you will learn how to retain the state of an RNN when processing long sequences.In [1]: import tensorflow as tftf.__version__ Out[1]...…

    2020-04-05
    tensorflowCoursera
    阅读全文 »

  9. Sequence Modelling

    <!DOCTYPE html>Coding_Tutorial In [ ]: import tensorflow as tfprint(tf.__version__) Sequence modelling¶Coding tutorials¶1. The IMDb dataset¶2. Padding and masking sequence data¶3. The...…

    2020-04-05
    tensorflowCoursera
    阅读全文 »

  10. Language model for the Shakespeare dataset

    <!DOCTYPE html>Week_3_Programming_Assignment Programming Assignment¶Language model for the Shakespeare dataset¶Instructions¶In this notebook, you will use the text preprocessing tools and RNN models to bui...…

    2020-04-05
    tensorflowCoursera
    阅读全文 »

  11. Data generators for time series

    <!DOCTYPE html>Keras_TimeseriesGenerator Keras TimeseriesGenerator¶In this reading we'll be looking at the TimeseriesGenerator, which is used for preprocessing and generating batches of temporal data.Examples of seq...…

    2020-03-20
    tensorflowCoursera
    阅读全文 »

  12. Tensorflow Datasets

    <!DOCTYPE html>TensorFlow_Datasets TensorFlow Datasets¶In this reading notebook, we will take a look at the tensorflow-datasets library.We have previously made use of the tf.keras.datasets package, which gave us acc...…

    2020-03-20
    tensorflowCoursera
    阅读全文 »

  13. Data pipeline with Keras and tf.data

    <!DOCTYPE html>Week_2_Programming_Assignment Programming Assignment¶Data pipeline with Keras and tf.data¶Instructions¶In this notebook, you will implement a data processing pipeline using tools from both K...…

    2020-03-20
    tensorflowCoursera
    阅读全文 »

  14. Data Pipeline

    <!DOCTYPE html>Coding_Tutorial In [2]: import tensorflow as tfprint(tf.__version__) 2.0.0Data Pipeline¶Coding tutorials¶1. Keras datasets¶2. Dataset generators¶3. Keras image data augme...…

    2020-03-20
    tensorflowCoursera
    阅读全文 »

  15. Creating Datasets from different sources

    <!DOCTYPE html>Creating_Datasets_from_different_sources Creating Datasets from different sources¶In this reading notebook, we will explore a few of the ways in which we can load data into a tf.data.Dataset object.In...…

    2020-03-10
    tensorflowCoursera
    阅读全文 »

  16. Transfer learning

    <!DOCTYPE html>Week_1_Programming_Assignment Programming assignment¶Transfer learning¶Instructions¶In this notebook, you will create a neural network model to classify images of cats and dogs, using transf...…

    2020-03-10
    tensorflowCoursera
    阅读全文 »

  17. The Keras functional API

    <!DOCTYPE html>Coding_Tutorial In [3]: import tensorflow as tfprint(tf.__version__) 2.0.0The Keras functional API¶Coding tutorials¶1. Multiple inputs and outputs¶2. Tensors and Variables...…

    2020-03-10
    tensorflowCoursera
    阅读全文 »

  18. Layer nodes

    <!DOCTYPE html>Layer_nodes Layer nodes¶In this reading, we will be looking at the concept of layer nodes when creating a computational graph with shared layers.In [1]: import tensorflow as tfprint(tf.__versi...…

    2020-03-10
    tensorflowCoursera
    阅读全文 »

  19. Device placement

    <!DOCTYPE html>Device_placement Device placement¶In this reading, we are going to be looking at device placement. We will see how to access the device associated to a given tensor, and compare the use of GPUs and CP...…

    2020-03-10
    tensorflowCoursera
    阅读全文 »

  20. Image classifier for the SVHN dataset

    <!DOCTYPE html>Capstone Project Capstone Project¶Image classifier for the SVHN dataset¶Instructions¶In this notebook, you will create a neural network that classifies real-world images digits. You will use...…

    2020-02-20
    tensorflowCoursera
    阅读全文 »


1 / 2 更早 →

Copyright © Sunsky 2021 by lsunsky |

本站总访问量 次